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Abstract

This thesis presents an exploration of various aspects of quantum dynam-
ics, collapse mechanisms, and measurement statistics, which collectively con-
tribute to a deeper understanding of quantum behavior. The first chapter
investigates the quantum dynamics of a classically chaotic system, revealing
a new form of aperiodic wavefunction evolution with strange nonchaotic char-
acter. Diagnostic tests confirm this intriguing finding. In the second chapter,
statistical properties of periodic measurements on a quantum harmonic oscil-
lator are analyzed, with implications for particle localization accuracy. The
third chapter proposes interaction-induced wavefunction collapse models in
an impact oscillator, offering testable predictions for energy and position
distributions.

Collectively, this research expands our understanding of quantum dy-
namics. The observed strange nonchaotic behavior opens new avenues for
exploring quantum phenomena and potential applications. Proposed collapse
models challenge conventional interpretations, offering insights into quantum
mechanics’ foundations. Statistical analysis of measurements indicated a pos-
sibility to control quantum systems. Our findings call for experimental vali-
dation, possibly with the supercooled nanomechanical cantilever systems.
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Chapter 1
Introduction

I think I can safely say that nobody under-
stands quantum mechanics.

RICHARD PHILLIPS FEYNMAN

1.1 Introduction

Quantum mechanics has a reputation for being elusive and incomprehensible.
A century after its inception, physicists still find some of its aspects deeply
troubling. The trouble is not mathematical, as is the case for many theories,
but conceptual. The working physicist has no trouble calculating predictions
for the results of experiments to extreme precision, making it the most well-
tested theory to date.

In this thesis, we embark on an exploration of the intricate relationship
between chaos, measurement, and collapse mechanisms within the quantum
domain. Through investigations on a few different problems, we aim to shed
light on some foundational issues. We uncover novel aspects of quantum
dynamics, unravel the consequences of interaction-induced collapse, and ex-
amine the statistical properties of quantum measurements. By investigating
these interconnected threads, we seek to deepen our understanding of the
fundamental nature of quantum systems.

Before we embark on this journey, certain notions need to be introduced.

17



CHAPTER 1. INTRODUCTION

1.2 Theoretical Background

1.2.1 Classical chaos

But, even if it were the case that the natural laws had
no longer any secret for us, we could still only know
the initial situation approximately. If that enabled
us to predict the succeeding situation with the same
approximation, that is all we require, and we should
say that the phenomenon had been predicted and that
it is governed by laws. But it is not always so; small
differences in the initial conditions may produce very
great ones in the final phenomena.

JULES HENRI POINCARE
P. 68, Science and Method [1]

In this thesis, a dynamical system is any physical system endowed with a
state that varies in time according to a deterministic rule. Usually, the state
is a point in an N-dimensional phase space, x € RV, and the deterministic

rule could be an iterated map &
Ao € ot
VA ghe

Xn4+1 = f(xn);
¥X

if time is discrete, or a set of differential equations
x = g(t,x) I ‘

for continuous-time systems, with f,9:RY = RV, A popular example of a
continuous-time dynamical system is the Lorenz system, first introduced by
Edward Lorenz in connection with simplified models of atmospheric convec-
tion [2]. It is governed by

dz
s L a¥ \‘O,(\Ob\,a; 3 =~ -2,

ose
- Q@rwwu» \‘g(b %zﬂﬁ(ﬁ—?«’)—y» ‘ﬁ
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1.2. THEORETICAL BACKGROUND

Figure 1.1: A chaotic trajectory of the Lorentz system for the parameter
values 0 = 10, p = 28 and B = 8/3. The trajectory is deliberately made
thicker to better illustrate depth. Shadows on the three orthogonal planes
show the orthographic projections of the trajectories.

Does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?

EDWARD NORTON LORENZ

For a certain range in parameter values and initial conditions, this system
has been shown to exhibit chaotic dynamics (Fig. 1.1) in which two nearby
initial conditions separate exponentially fast but remain bounded in phase
space. The rate of this exponential divergence is called the Lyapunov expo-
nent which is defined in Section 1.2.1. Imagine a ball of initial conditions in
phase space. The dynamics of the system will stretch and contort the ball
after some time. Subsequently, the stretching direction folds, which allows
the attractor to remain bounded. This repeated stretching and folding, like
kneading of dough, leads to mixing, whereby every initial condition evolves
to visit arbitrarily close to every point on the attracting set. Any small dif-
ference in initial conditions grows exponentially fast and all predictability is
lost. The motion, although perfectly deterministic, looks random, like chaos,
hence the name. A prerequisite for chaos is the presence of nonlinear terms
in the differential equations of motion. For example, the Lorenz system has
an zy term in the third equation. Chaos in continuous time systems only
occurs for phase space dimension 3 or greater.
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CHAPTER 1. INTRODUCTION

Lyapunov Exponents

x(t) + (1)

e B

1811 = l16(0) ]

Figure 1.2: Tllustration of Lyapunov exponent. A ball of initial conditions
of dimension [|§(0)| is evolved for some time t, and it gets stretched and
distorted. This stretching is exponentially fast for chaotic systems. The
multiplier in the exponent, ) is called the local Lyapunov exponent for the
trajectory. Since the stretching direction folds, the stretching has to be com-
puted over sufficiently small times. Averaging the local Lyapunov exponents
over the entire attractor gives us the Lyapunov exponents of an attractor.
For an n-dimensional phase space we have n Lyapunov exponents. The direc-
tion of the maximum stretch corresponds to the largest Lyapunov exponent.
The largest Lyapunov exponent of a chaotic attractor is always positive.

The Lyapunov characteristic exponents of a dynamical system charac-
terize the rate of separation of infinitesimally close trajectories [3]. These
exponents are named after the Russian mathematician Aleksandr Lyapunov
who pondered the problem of stability of dynamical systems in his Ph.D. the-
sis [4] and developed a method involving linearization of equations of motion.
For a chaotic dynamical system, two nearby initial conditions separated by
a distance [[6(0)|| in phase space separate exponentially fast (see Fig. 1.2)

18I ~ e*[18(1)]| (1.1)

at an exponential rate given by \. For a dynamical system with an n-
dimensional phase space, these rates of separation can be different for differ-
ent orientations of the initial distance vector. Hence, there exists a spectrum
of Lyapunov exponents equal in number to the dimension of the phase space.
In general, the spectrum is different for different initial conditions, but gen-
erally, we are interested in the values of these exponents averaged over an
attractor. The largest of these exponents, A\, determines whether the sys-
tem is regular (Apnax < 0) (periodic, quasiperiodic) or chaotic (Apayx > 0).

20



1.2. THEORETICAL BACKGROUND
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Figure 1.3: The iterative process of generating the Koch snowflake, named
after the Swedish mathematician Helge von Koch [25]. Begin with an equi-
lateral triangle. Taking the middle third of each side as a base, construct
smaller equilateral triangles on each side. Now remove the base. Repeating
this process ad infinitum gives us a snowflake-like structure. Notice that each
step increases the perimeter by a factor of 4/3. The area on the other hand,
increases additively in the series A;(1+1/3+1/3%+...41/3" +...) which
adds up to 34;/2. So, in the limit of infinite steps, its length approaches
infinity but its area remains finite.

Henceforth, by Lyapunov exponent, we shall refer to the largest exponent.
Several methods have been developed to reliably compute the Lyapunov ex-
ponent from time series data [5-19)].

In dissipative dynamical systems, where there is a continuous loss of en-
ergy, the state often evolves towards stable structures in phase space. These
stable sets are called attractors as they attract all trajectories in their neigh-
borhood towards them. An attractor is said to be strange if it has a fractal
structure. Fractals are described in the following section. Strange attractors
typically occur in dissipative chaotic systems (see Fig. 1.1), but strange non-
chaotic attractors also exist [20]. These attractors are strange in the sense
of being geometrically fractal, but their largest Lyapunov exponent is nega-
tive. Such attractors have been typically found to occur in quasi-periodically
driven dissipative systems [21], [22], [23]. A quasi-periodic drive is one com-
posed of two or more incommensurate frequencies. Systems without external
drive can also have strange nonchaotic dynamics. Remarkably, certain stars
pulsating at the golden ratio have shown signs of strange nonchaotic attrac-
tors [24].

Fractals

Fractals are geometrical objects that have detailed structures at all scales.
They are neither a finite set of points nor piecewise-differentiable. An ex-
ample of a fractal is the Koch snowflake (Fig. 1.3). Although they are often
self-similar under scaling, it is not a strict requirement. Rather, fractals are
characterized by their fractal dimension. Unlike smooth objects which have
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@V&/ZFigure 1.4: (a) A devil’s staircase is a continuous, monotonically increas-

ing function that is differentiable almost everywhere with derivative zero,
except on a Cantor set. Functions with this property are called singular.
Its devious character lies in the fact that an infinite number of steps lead
only to a finite ascent. (b) The middle-thirds Cantor set is a fractal that
is formed by removing the middle thirds of a segment of unit length. The
two resulting segments are subjected to the same procedure. Repeating this
process ad infinitum generates the Cantor set. The Cantor set is a fractal
with self-similar properties at all scales. The fractal dimension of this set is
log2/log3 ~ 0.69. See Section 1.2.1 for the definition of fractal dimension.
This particular devil’s staircase is called Cantor’s function. Notice that the
devil’s staircase is constant on intervals where the middle-thirds Cantor set
is empty.

integer dimensions, fractals possess fractional dimensions. The concept of
dimension is intuitively related to how the bulk of something scales as its
size is changed. For example, when we double the sides of a cube, its volume
increases eight-fold which is 2. Hence, the dimension of the cube is 3. This
intuitive notion can be formally written down as [26]

dimension = lim M. (1.2)
size—0 log(1/size)

The small size limit entails that dimension is a local property and ex-
tending it to a global notion will require some form of averaging where the
measured dimension is different in different parts of the structure. The con-
cept of dimension is intimately related to the degrees of freedom in the set.
A rigorous definition of dimension was given by Hausdorff [27] but the def-
inition is not operationally applicable. Hence, several alternative estimates
of the dimension of a geometrical object have been developed. For instance,
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Figure 1.5: An illustration of the box-counting dimension for the Koch
snowflake. As the grid gets finer the approximation of the dimension gets
better. The limiting value is In4/In3 ~ 1.2619.

the pointwise dimension is a measure of the dimension around a point on an
attractor. For a pointwise mass function Bx(r) defined for a ball Bx(r) of
radius 7 centered at X as

Bx(r) = u[Bx], (1.3)

the pointwise dimension at X measures the scaling of this mass function at
X with r

D,(X) = lim log Bx(r)

1.4
r—0 logl/r ( )

To extend it to a global dimension for an attractor, A, a weighted averaging
is performed

m:Ammmm. (15)

A computationally simpler dimension is the boz-counting/ capacity di-
mension. For a finite-sized grid of size r, it is defined as

_ . log n(r)
D=l g1/ R ) =

where n(r) is the number of boxes in the grid that have some part of the
object in it. It provides an upper bound for the Hausdorff dimension which
gets tighter as the size of the grid size r is reduced. An illustration of cal-
culating the box-counting dimension for the Koch snowflake is provided in
Fig. 1.5.

While calculating the box-counting dimension, each box was either counted
or discarded based on the presence or absence of the object in it. But any
information about the number of points in a box was thrown away. The
generalized dimension takes this into account by counting the number of
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points in the i** box and dividing it by the total number of points to find
the probability P; of the attractor being in the i*® box. It is defined as

pe Qo
By=—n Y T . [ (1.7)

g—1r-0 logr

The value of g determines the kind of averaging. For ¢ = 2, it is the arithmetic
average, while for ¢ = 3 it is the root mean square average. ¢ — 1 tends
to be the geometric average. The generalized dimension was first developed
out of a need to explain why different algorithms gave different results for
the dimension of a fractal set. For uniform fractals, D, does not vary with
q which ascribes a unique dimension to the fractal. For nonuniform fractals,
Dy increases with increasing ¢ and the dimension of the fractal is a spectrum
of values between D_., and D_..

The measured fractal dimension can be different at different parts of the
object, or different scales. Such ob jects are called multifractals.

Characterizing attractors

Strange attractors have a fractal structure so they can be characterized by
computing their fractal dimensions. Other methods of characterizing attrac-
tors have also been developed.

The Lyapunov dimension is specifically a way of characterizing the di-
mension of a strange attractor. It is defined as [28]

- }(\ /AN W < j
07 o\gswww& orwr)?“ﬁ DL:j+])\~1 lZ)\i} (1.8)
;‘“ R }\A ) J+1l S

where j is the highest index for which the sum Z{:z Ai is non-negative.

Yet another measure of dimension comes from how much information is
required to specify a fractal at a certain scale. Its scaling with size leads to
the information dimension [28]

e —ll—% Inl/e’ el
where
X N
I(€) = =) pilnp, (1.10)
i=1
\'\/ 1\.5\;\’ ‘MN‘Q ) 24
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1.2. THEORETICAL BACKGROUND

Different types of attractors in dynamical systems

In dissipative dynamical systems, a phase space trajectory moves from one
energy shell to the next as it dissipates energy. As energy shells, like Rus-
sian dolls, are contained within one another from the larger to the smaller,
this leads to shrinkage in phase space volumes. If this decrease is allowed
to happen without bound, the system will asymptotically approach a stable
equilibrium point. However, if the system has a source of energy, the compe-
tition between the two opposing forces leads to rich and interesting dynamics.
The phase space trajectories can asymptotically approach structures which
can be points, called fized points, periodic orbits, called limit cycles, or me-
ander around aperiodically approaching but never quite reaching bounded
sets which are fractals.

Such geometrically nontrivial attractors with non-integer fractal dimen-
sion and Cantor set structure are called strange attractors, coined first by
Ruelle and Takens in [29]. Before chaos theory had matured, Edward Lorenz,
faced with this monstrosity, tried to describe it as “... an infinite complex of
surfaces, each extremely close to one or the other of two merging surfaces.”
[2]. The dynamics on these attractors are typically extremely sensitive to the
initial conditions of the trajectory, such that two very close initial conditions
spread away exponentially fast. But because the attractor is bounded, this 2 ?
divergence cannot continue indefinitely, eventually reaching the size of the
attractor and then recurrently coming closer and moving apar fixed point, ’. =

liiﬁfﬁlcycle, High periodic limit cycle, quasiperiodic, mode-locked periodic, /
strange attractor-chaotic, and nonchaotic. ‘/_,_/
The set of all states that eventually evolve to a certain attractor is called

the basin of attraction of that attractor. The basin of attraction of a magnetic
pendulum is illustrated in Fig. 1.6.

1.2.2 Strange Nonchaotic Attractors (SNA)

Although strange attractors are typically chaotic, this behavior is not univer-
sal, as was first demonstrated by Grebogi et al. in systems driven quasiperi-
odically (at two incommensurate frequencies) [20]. These special attractors,
called Strange Nonchaotic Attractors, or SNA for short, were later found
to be quite commonplace in quasiperiodically driven systems, generally ap-
pearing in parameter space, at the edge of periodicity/quasiperiodicity and
chaos. Their dynamics are also in a sense intermediate between regular and
chaotic—no sensitive dependence on initial conditions, yet aperiodic, with a
fractal structure, like chaotic systems.

SNAs have been found to occur in quasiperiodically driven magneto-
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Figure 1.6: A magnetic pendulum consists of a bob made of iron suspended
from a pivot about which it can swing freely. Three magnets are placed at
three corners of an equilateral triangle on a horizontal surface. The magnets
are strong enough that the gravitational stable equilibrium point becomes
unstable and three new stable equilibria, corresponding to each magnet, are
born. The basin of attraction for these three equilibrium points is plotted
in color. The basin boundary forms a fractal structure which gives rise to
the extreme sensitivity to initial conditions in this system. This figure is
adapted, with slight modification, with permission from [30].

elastic ribbons [31], electrochemical cells [32], electronic circuits [33-36],
overdamped Josephson junctions [37], pendula [38], Ueda’s circuit [39], in
the piecewise-smooth articulated mooring tower model [40], and in several
discrete-time maps [38, 41-45]. Digital and analog simulations of a multi-
stable potential with quasiperiodic drive, which models a radio-frequency-
driven superconducting quantum interference device (SQUID) with inertia
and damping effects, have found SNAs that are robust to noise inherent
in realistic devices [46]. Simulations of the Shimizu-Morioka oscillator also
shows signs of SNAs [47]. A circuit with two LCR oscillators, driven sinu-
soidally and coupled to each other by a nonlinear element with piece-wise
linear v-i characteristics was shown to exhibit strange nonchaotic dynamics
[48]. Sathish et al. have demonstrated the presence of strange nonchaotic
attractor in a periodically driven Duffing oscillator in the presence of noise.
SNAs have also been observed in neon glow discharge without any external
forcing [49]. An intriguing discoveryowas finding strange nonchaotic attrac-
tors in data collected by the Keplgr spacecraft [24]. These star systems,
whose brightness oscillations have primary and secondary frequencies in the
golden ratio, show signatures of SNAs.

An unexpected connection exists between SNAs in classical systems and
spatially quasiperiodic potentials in quantum systems. This equivalence was
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Figure 1.7: The quantum dynamics of an electron in a quasiperiodic poten-
tial is isomorphic to a strongly damped driven pendulum (in this illustra-
tion, the bob is submerged in a highly viscous fluid). This correspondence,
which comes about through the Priifer transformation, has interesting conse-
quences for both systems. In particular, when driven at two incommensurate
frequencies, the dynamics of the pendulum becomes strange nonchaotic and
the quantum spectrum becomes fractal.

first elucidated by Bondeson et al. [50] for the time-independent Schrodinger
equation,

W+ AV (2)y = By, (1.11)

where V(r) is spatially quasiperiodic, V(z) = sink;z + sink,z (Fig. 1.7).
Such potentials are studied extensively [51-53] because of their relevance
to condensed matter physics and also because they lie somewhat between
periodic crystals where the quantum states are delocalized Bloch waves [54]
and random disordered materials where the states are Anderson localized
[55]. For irrational values of k;/k, and small A the energy eigenstates are
typically extended while for large A the states are typically localized. The
energy spectrum is known to lie on a Cantor set (see Fig. 1.4(b)) of finite
measure with stop-bands lying on the complement of this Cantor set [56-59].
One applies the Priifer transformation ¢ (z) — ¢(z) via

o _ ¥ +igy
Y —igy !

where g is an arbitrary constant. Using Euler’s formula to expand the ex-
ponent in the left-hand side, grouping the real and imaginary terms on the
right-hand side, and assuming that 1) to be real, we obtain

VRogy 209

(1.12)

cos¢ +ising = VE T+ U + 07 — g2t (1.13)
Comparing real and imaginary terms on both sides,
P2 — g%y . 29y
COS¢ = m, and Sll’ld) = W (114)
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Taking a spatial derivative of equation 1.12 yields
eivigt = W HigV) (W —igy) — (@' +igy) (" — igy)
(W' ~igy)”

Substituting e from equation 1.12 and simplifying the right hand side, we
obtain

: (1.15)

Vigh o V=8

1 = 2g— 1 " 1.16
v=igh” Yy —igyy et
i 1/}/2 lenc wl/w
Substituting ¢” from equation 1.1,
Y2+ (E—AV) 9
¢I = 2g wa o 921/]2 ) (118)
rearranging terms in the numerator
/ (g _ E—g,\V) (2 — g2?) + (g ” E—gAV) (W2 + g2y?)
¢ = P2 + 22 l=15)
E— AV 92 — g2y ( E—AV)
=lg— 2 + g+ ] 1.20
( g ) Y2 +gyz 0 \I g (1.20)

and substituting by cos ¢ from equation 1.14 and simplifying, we reach our
desired equation

QS':!%[{92—E+/\V(x)}cos¢>+{92+E—/\V(x)}]. (1.21)

This can be shortened to

¢’ = a(z)cos ¢ + B(z). (1.22)

This is the same as the equation of motion of a highly damped driven pen-
dulum

v = ~(t) cos ) + f(t)} (1:23]

where the angle ¢ is measured with respect to the horizontal direction and v,
7, and f represent the frictional, gravitational and external torques respec-
tively. The inertial term ¢ has been neglected, which is appropriate in the
case of very high damping and slow-varying (t) and f(t) functions.
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Figure 1.8: A heavily damped pendulum driven quasiperiodically at two
incommensurate frequencies f(t) = cosw;t + coswst has strange nonchaotic
dynamics. The attractor for the system is shown. The time variable is
wrapped around with the period of the first forcing frequency resulting in
the whole dynamics being confined on a cylinder.

It was shown in [50], that after a suitable coordinate transformation, the
Lyapunov exponent and the winding number of the solutions of equation 1.22
and equation 1.23 are the same upto a constant value, thus establishing the
connection between the two systerhs. Furthermore, as a parameter is varied,
Bondeson et al. show that the winding number increments form a dewvil’s
staircase (see Fig. 1.4(a)). This pendulum system has been shown to exhibit a
three-frequency quasiperiodic orbit, a two-frequency quasiperiodic attractor,
and strange nonchaotic behavior which correspond to spatially extended,
stop-band, and localized solutions of the Schrodinger equation. The strange
nonchaotic attractor for the pendulum system is shown in Fig. 1.8.

Detection and characterization of SNAs

SNA detection from experimental time series involves two steps — (1) to
show that the time series is not chaotic, the Lyapunov exponent must be
non-positive and (2) to uncover the geometrical character of the attractor,
the fractal dimension, and scaling properties of the spectral distribution are
estimated. Detection of SNAs from experimental time series or numerical
simulation requires that its two characteristic features—(i) its strange attrac-
tor, and (ii) its non-chaotic behavior, be established.

29



CHAPTER 1. INTRODUCT] ON

Power spectral features: The discrete Fourier transform [60] of the
samples of a time series {zn} given by

N
X Y me erooiy (1.24)

n=1

for the k-th Fourier mode has scaling properties that can be utilized for
the detection of strange nonchaotic attractors. The spectral distribution
function N(0)[61] is defined as the number of Fourier peaks with amplitude
greater than an arbitrary threshold o (see Fig. 1.9(a) and (b)). For strange
nonchaotic attractor it was shown that the spectral distribution function
scales like a power-law

N(o) ~ a“’, (1.25)

whereas for two-frequency and three-frequency quasiperiodic attractors it
scales as In1/0 and In*1/0 respectively.
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Figure 1.9: (a) An illustration of the process of calculating the scaling (b)
spectral distribution function

Density of finite-time Lyapunov exponents: Although the average
Lyapunov exponent on a strange nonchaotic attractor is negative, local in-
stabilities due to the strangeness give rise to a positive Lyapunov exponent
when calculated on shorter fragments of the time series. Here ‘short’ refers
to fragments whose time duration is shorter than the fundamental period of
the dynamics. These are called finite-time Lyapunov exponents (F TLEs).
These regions of positive FTLEs are compensated by larger regions on the
attractor having negative FTLEs. This property can be used as a distin-
guishing feature of SNAs. The stationary density of FTLEs, defined such
that P(N, \)d] is the probability that a chunk of time series of length N has
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Figure 1.10: Stationary density of finite-time Lyapunov exponents for a typ-
ical system with strange nonchaotic dynamics.

FTLE which lies between A and X + d\ [62, 63]. The local instabilities in
SNAs result in the density of FTLEs having some component at positive A.
This component decreases as N is increased. An example of such a density
is plotted in Fig. 1.10.

Fractal dimension of the attractor: A strange attractor is a fractal ob-
ject. Hence estimating its fractal dimension (see Section 1.2.1) is a straight-
forward method to characterize the strangeness of an attractor. A long-
standing conjecture by Kaplan and Yorke [64-66] suggests the equality of
the Lyapunov dimension and the information dimension. If it is valid in the
case of strange nonchaotic attractors, it would imply that D, = D; = 1.
This can be used to distinguish SNA from chaotic attractors for which Djy is
expected to be larger than 1. The conflicting local and global stability fea-
tures of strange nonchaotic attractors make the estimation of their dimension
numerically difficult requiring a large number of points for modestly accurate
estimation [67].

The 0-1 test: The 0-1 test was proposed by Georg A. Gottwald and Ian
Melbourne in a series of papers [68-70]. Originally intended to distinguish
between periodic/quasiperiodic and chaotic time series, it has found wider
application as it has the advantages of not requiring phase space reconstruc-
tion [71], being computationally inexpensive and easy to implement. It takes
a sampled data set as input and outputs a single value, K, between 0 and
1, with 0 indicating periodicity/quasi-periodicity and 1 indicating chaos. No
prior information about the system is required to apply the test.

The given time series ¢, for n € N is used to drive the two dimensional
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System
Prnt1 = p, + ¢n Cos Cny (126)
(]n+1 = dqn Gt ¢n Sin an (127)

where c € (0,27) is a constant. For large classes of systems, it can be shown
'that [.72]‘the trajectory in p — ¢ plane is bounded if the driving time series
is periodic/quasi-periodic (Fig. 1.11(a)). On the other hand, the trajectory

is asymptotically Brownian if the driving time-series_is chaotic and grows
diffusively (Fig. 1.11(b)). The mean square O\l( sVance 7
(dis ploce et
s a vocbr)

Figure 1.11: The iterates (p,,q,) when forced with (a) regular time series,
saturate at a certain distance from the origin. (b) When forced with a chaotic
time series, however, it grows diffusively akin to a 2-dimensional random
walk.

N
M, = %Z [(jn = P)* + (gjan — 3;)%] (1.28)

grows linearly in the case of chaotic time series and saturates for regular
time series. Typically values of M,, are calculated for n < N /10 to ensure the
N — oo limit. This asymptotic growth rate of the mean square displacement
is distilled into a diagnostic, K given by

e T log M,
n—oo logn [

(1.29)

which gives the value K ~ 0 for a periodic/quasiperiodic time series and K ~
1 for a chaotic time series. The value of ¢ € (0,27) is chosen randomly, as
resonances with the internal frequencies ¢ = w can lead to spurious resonances
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and give a misleading result. The computation is hence repeated for several
values of ¢ and the median K value is the final result. The test can suffer
from oversampling and finite-size effects, but steps to overcome both are
mentioned in [73, 74]. Mathematical justification for these claims can be
found in [72, 75].

If the p— g system is driven by a time series from a strange nonchaotic at-
tractor, the mean square displacement is seen to grow slower than diffusively
W. Gopal et al. [77] have extended the 0-1 test to work
reliably in distinguishing strange nonchaotic attractors from other forms of
dynamics by fixing the value of ¢ to the golden ratio (\/5 + 1) /2. Toker et
al. [78] have devised a pipeline for the detection of chaos which used the
0-1 test. They have demonstrated that the test can successfully distinguish
between strange-nonchaotic attractors and chaos among other things.

The following two methods have also been proposed by some authors.
However, for our work, we did not use them.

%

Parameter and phase sensitivity: A strange attractor is a non-differentiable

object (in directions other than that of the trajectory) with structures down
to indefinitely small scales. This non-differentiability was utilized in [63] to
distinguish between smooth and strange attractors. The maximum value of
the derivative of a strange attractor x(#) with respect to the external phase of
forcing, dz/df was shown to grow boundlessly. The phase sensitivity function

oz,

In(z,0) = min [ max | =

7,0 |0<n<N

] (1.30)

measures the growth rate of the derivative with respect to the external phase
as the length of the time series, N increases. For the case of chaotic attrac-
tors, this grows exponentially with N [79]. For SNA, the growth is a power
law [63, 80]

'y ~ N (1.31)

Phase sensitivity has been generalized to higher dimensions in [81]. Other
measures may be devised based on similar ideas. For instance, the inte-
gral of the derivative dx/df converges for a smooth curve, while it diverges
for strange attractors. Along similar lines, sensitivity to the variation of a
parameter € may be quantified as

e
de

] : (1.32)

Iy = min | max
z,0 |0<n<N

which also shows power law growth for strange nonchaotic attractors [80].
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Autocorrelation function: Pikovsky et al. used the autocorrelation func-
tion to study the characteristic features of SNA [82]. The autocorrelation
function for a discrete time series with zero-mean is defined as

($t$t+r>
R(1) = ———~. 1.33
(T) <I2> ( )
They find that for a quasiperiodic orbit, R never reaches the value 1 although
it comes arbitrarily close to 1 at resonant times. For SNA they report self

similarity near resonant times with peaks of height halfway between 0 and
1. The mean squared autocorrelation

Ru =1 3R (1.3

decays exponentially for chaotic motion, but hovers around intermediate val-
ues for SNA [79].

1.2.3 Hamiltonian chaos

In Hamiltonian systems, which conserve energy, chaos shows up in a slightly
different form. The phase space is mixed, with parts of it being chaotic
and other parts periodic or quasi-periodic. For Hamiltonian systems with a
2n-dimensional phase space, having n constants of motion makes them inte-
grable. In such systems, the dynamics is confined to an n-dimensional torus.
Kolmogorov, Arnold, and Moser studied the persistence of such tori under
small perturbations. The KAM theorem, which bears their names, states that
under small perturbations, some of the tori survive. The union of all surviv-
ing tori is called the Kolmogorov set, on which the dynamics is quasiperiodic.
In the complement, the dynamics can be very complicated. Chaotic islands
are enveloped by KAM-tori. The evolution preserves phase space volume,
hence there are no attractors, but the Lyapunov exponent continues to be
positive for chaotic systems. A few aspects of chaos in Hamiltonian systems
will be illustrated in the context of a kicked rotor system in a subsequent
section.

1.2.4 Quantum chaos

One of the prominent realizations of this century has been that the world
is inherently quantum. Quantum theory has successfully fended all the ex-
perimental scrutiny we have been able to throw at it. Macroscopic quantum
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effects like superconductivity and superfluidity have us convinced that quan-
tum mechanics is not just confined to the scale of atoms and molecules. It
follows then that classical mechanics must be an approximation to the under-
lying quantum description. Nevertheless, even a century after its inception,
we are at a loss to explain features of the classical world in terms of quantum
principles except for very simple model systems.

One of the pressing questions in this quantum to classical transition is:
How do we explain the appearance of chaos in classical systems from quan-
tum principles? The linear quantum dynamics of the Schrédinger equation is
inadequate to explain the appearance of sensitive dependence on initial con-
ditions in classical systems. The only nonlinearity in the quantum description
comes through the process of measurement, which can and has been used to
explain the appearance of chaos [83-86], but it comes with its own baggage
of problems as we will discuss in a later section (Section 1.2.7).

Remarkable as it is, this inability to explain deterministic chaos from
quantum principles was not the first brush between chaos theory and quan-
tum mechanics. Borrowing an insight from Poincaré, Einstein extended the
old quantum theory of Bohr, Sommerfeld, and Epstein, which is popularly
known today as the Wentzel-Kramer-Brillouin (WKB) method, to include
classical systems where the motion is on a torus. This is known today as
Einstein-Brillouin-Keller (EBK) quantization. Einstein could grasp that
even his slightly generalized quantization condition fails when the number of
integrals of motion is less than the number of degrees of freedom [87].

The new quantum theory of Schrédinger and Heisenberg could accommo-
date such systems, but newer questions emerged. Would Bohr’s correspon-
dence principle—which claimed that classical laws should arise in appropriate
limits of quantum laws, hold for systems whose classical limits are chaotic?
How can quantum dynamics, governed by the linear Schrodinger equation
give rise to the appearance of nonlinearity and deterministic chaos in the
classical world? It turned out that deterministic chaos, in its usual sense, is
ruled out because of the linear nature of quantum evolution [88]. The overlap
between two states, which measures the similarity between two states, is an
invariant of the quantum dynamics

W (0)|¢(0)) = ($(0)| UTT |4(0)) = (¥ (B)l6(1) (1.35)

Yet, classically chaotic systems do show distinct signatures in their quan-
tized counterparts [89]. Although quantum dynamics shows no sensitive
dependence on initial states, the expectation values of the commutators of
local operators, called the out-of-time-order correlators do capture the expo-
nential divergence seen in the classical counterpart [90-94]. A small number
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of eigenstates of such classically chaotic systems have enhanced probability
density around classically periodic orbits, a fact known as scarring, leading
to weak ergodicity breaking [95-97]. The study of such signatures has led to
alarge body of knowledge giving birth to the field of quantum chaos [98-100].
Some of these developments will be illustrated using the specific case of the
kicked rotor in the subsequent section.

The kicked rotor

Over the past half-century, the kicked rotor (Figure 1.12(a)) has emerged as a
highly influential model that has made significant contributions to the theo-
retical developments in the field of quantum chaos [101]. From a classical per-
spective, this rotor serves as a natural model for several compelling reasons.
Its structural characteristics align with generalized coordinate systems, par-
ticularly the action-angle variables, which are fundamental for understanding
the dynamics of integrable systems. In these action-angle coordinates, inte-
grable dynamics resemble the motion of a free particle within a cylindrical
phase space, where the position coordinate takes on the characteristics of an
angle.

This system provides a valuable framework for exploring how perturba-
tions can disrupt integrability and nearly-integrable dynamics. It has played
a pivotal role in research related to the Kolmogorov-Arnold-Moser (KAM)
theory, which investigates how quasi-periodic motion in integrable systems
either persists or disintegrates due to perturbations. The kicked rotor fea-
tures a control parameter (the kicking strength) that determines the nature
of its dynamics. At lower parameter values, the system remains integrable or
close to it, but as the parameter increases, the system undergoes a transition
towards fully developed and strongly chaotic dynamics.

There are two primary versions of the kicked rotor, each with distinct
applications. The first version exhibits an infinite cylinder in phase space.
Its dynamics in the momentum variable display a range of behaviors, from
confined dynamics in the integrable and nearly-integrable regimes to diffusion
in the fully chaotic regime [102]. In between, it showcases combinations of
confined dynamics, diffusion, and accelerator modes, which exhibit rapid
energy growth. Various crucial quantities, such as diffusion constants, action
diffusion constants, and Lyapunov exponents, can be computed analytically.
Other aspects, such as determining the parameter value at which the last
KAM torus breaks down, have been the subject of extensive study.

The second version of the kicked rotor, periodic in momentum, forms a
torus in phase space, which is compact and finite in extent (Figure 1.12(b)).
Here, dynamics can vary from integrable to chaotic, but momentum diffusion
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(a)

K cos6

Figure 1.12: (a) A schematic diagram of the kicked rotor system. The ro-
tor rotates with constant angular momentum p except at periodic instants
when the momentum is kicked by an amount K cos 6 where § is the instan-
taneous phase of the rotor and K is the kicking strength. This system is
a paradigmatic example of chaos in Hamiltonian systems both in classical
and quantum mechanics. (b) The phase space of the momentum-bounded c -)’Ca s our (=]
kicked rotor system lives naturally on a torus. The colors correspond to the P h
Lyapunov exponents of the trajectories residing in those regions.
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is no longer possible. This version is more suitable as a model for bounded W 'F\b
systems, whereas the former version primarily serves open systems. (\Lt S
In the realm of quantum mechanics, quantizing the kicked rotor on a S@(/)"}OUL\)
cylinder is straightforward as has been shown in the following section. It
has been associated with a Lloyd model of Anderson localization, and the
localization properties of its eigenfunctions have been extensively explored
across various regimes. The presence of a reflection symmetry around zero
momentum produces a new kind of tunneling between the Anderson localized
eigenstates. The kicked rotor has played a pivotal role in studies concerning
the quantum suppression of classical behavior, quantum accelerator modes,
and more recent explorations related to fidelity. Additionally, it has enhanced
our understanding of the statistical characteristics of extreme values associ-
ated with eigenangles and eigenvectors and their implications for quantum
entanglement and quantum information theory.

The classical kicked rotor

A general kicked rotor pertains to a particle constrained to move along a
circular path and is subjected to instantaneous kicks at time intervals of
nt. If we consider the radius of the circular path as 1/27 and 7 as 1, the
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Figure 1.13: Phase portrait of the kicked rotor for different values of kicking
strength K. Each point in phase space is evolved and the Lyapunov exponent
of the evolution trajectory is plotted in color. For K — 0, the rotor rotates
freely. For small values of K, parts of the phase space become chaotic but
these are restricted by invariant tori. At the critical value K A 0.97 the last
invariant torus is destroyed.

corresponding Hamiltonian takes the following form:

2
H@m:%+vm§)m—m‘ (1.36)
nez

Here, V/(6) represents a function that exhibits periodic behavior within
the range 6 € [0,27). From the Hamiltonian H (6,p), we can derive mapping
equations that establish the connection between the position and momentum
(0i+1, pi+1) of the particle just before the (n+ 1)th kick and those (6:,pi) just

before the nth kick as follows:

{Pn+1 =Pn — V,(en)’

1237
9n+1 = 971 + Pny1 5 ( )

In these equations, V' represents the derivative of V with respect to 6.
The simplest periodic function for this circular system is the fundamental
harmonic function:

V() = —Ksing, (1.38)

which gives rise to the standard map.

Figure 1.13 illustrates the transition from integrable (regular) dynamics
to chaotic dynamics as the parameter K increases. When K — 0, the map
exhibits integrable behavior and effectively represents a stroboscopic map of
a freely rotating particle. This includes both rational and irrational tori,
depending on the relationship between the rotation frequency and the strobe
frequency. As the kicking strength is increased from zero, while maintaining
the same strobe frequency, the irrational tori survive minor perturbations,
following the principles of the KAM theorem. Meanwhile, the rational tori
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give rise to pairs of stable and unstable orbits as dictated by the Poincaré-
Birkhoff theorem. With increasing K, the phase space becomes a mixture
of stable and chaotic orbits. At approximately K = 1, the last remaining
rotational irrational KAM tori disintegrates, leading to global diffusion. A
stable fixed point endures up to K = 4. Beyond K ~ 5, the standard
map is considered to be chaotic, although it is not conclusively proven to be
completely chaotic for any given K value. For an infinite range of K values,
stable fixed points are known to emerge on the p = 0 line for the torus map,
representing accelerator modes for the cylinder map mode
occupy regions of phase space whose areas scal
Lyapunov exponent increases logarithmically as In
accurate approximation for large K values.

The quantum kicked rotor

The standard map is quantized using the one-period propagator U, also called
the Floquet operator, which evolves the wavefunction of the rotor from one
kick to just before the next kick:

\«\:gmg@\?\o“ ¢(0;t =n+1) = Ug(6;t = n). (1.39)

here the Floquet operator can be written as a product of a é-kick and
a free evolution ™.
K sin 6 WI 6
2 . g ‘P

U = Ufree Ukick =e ' " n (1.40)

Here, U is the quantum analog of the classical map in Equation (1.37). The
parameter K represents the kicking strength. The angular momentum gets
quantized to discrete values and provides a complete basis for representing
the kicked rotor. Any initial state can be propagated to any desired time by
the repeated pre-multiplication by U.

The unitary time evolution operator U has eigenvalues that lie on the
unit circle in the complex plane and can be expressed as e™**/". The phases
¢ are called the quasienergies as they are similar to the eigenvalues of a
quantum Hamiltonian. Similarly, we also have time periodic eigenstates ¢
corresponding to each quasienergy, called the Floquet modes [103)].

The eigenbasis of the Floquet operator forms a natural basis for repre-
senting any initial state, just like the eigenbasis of the Hamiltonian for a
static system. In the Floquet basis, the evolution of the state can be trivially
written down as

[B()) = (¥(0)[¢n(0)) |$n(t)) 7t/ (1.41)

n N‘EQ\oé
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Figure 1.14: Husimi functions of eigenstates of the Floquet operator of the
quantum kicked rotor.

One way to visualize the Floquet states in phase space is the Husimi func-
tion Q(0,p), which associates each phase space point (6, p) to the value of
the overlap between the wavefunction and a wave packet centered at position
¢ and with mean momentum p. Figure 1.14 shows such Husimi functions for
various values of the kicking strength K. The classical phase space struc-
tures, as displayed in Figure 1.13, have qualitative similarities to the quan-
tum Floquet eigenstates. In the integrable limit or at very weak chaos, the
eigenstate Husimi functions are concentrated on invariant structures of the
classical system. In the opposite limit of full-blown chaos, eigenstate Husimi
functions are distributed over the whole phase space, reminiscent of the er-
godic exploration of phase space of chaotic trajectories. More complicated
quantum structures emerge in the intermediate regime of mixed dynamics,

for which classicalb(chaos and regularity coexist, mere-comphcated-quantim
Structures-emerge-

This correspondence between the eigenstates and classical dynamics can
be probed further. One natural path is to investigate the statistical proper-
ties of the eigenvalues and eigenfunctions—of time-static Hamiltonians or of
the Floquet operator for time-periodic Hamiltonians. Indeed, such statistics
provide valuable information about the dynamics of the corresponding clas-
sical system. The answers to such questions belong to the subject of random
matrix theory, which is introduced in a subsequent section.

Classical emergence

The similarities between classical and quantum phase spaces can be appre-
ciated from a comparison between the phase space structures of Figure 1.13
and the Husimi representation of quantum Floquet eigenstates displayed in
Figure 1.14 for the kicked rotor. The transition to chaos is also accompanied
by qualitatively different behavior in both cases.

Due to the correspondence principle, classical dynamics must emerge from
the quantum map of the kicked rotor as i — 0. However, due to the difference
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in the way the states are represented in classical and quantum mechanics,
there is no unambiguous way of checking for this correspondence and multiple
methods exist. The dynamics of minimum uncertainty wavepacket dynamics
is one such method. For small values of h, the mean position and momenta
of all wavepackets approximately trace out the classical trajectories, for a
short time known as the Ehrenfest time, before spreading out and eventually
interfering with itself. Furthermore, in the limit 7 — 0, this correspondence
gets better and persists for a longer time scale, and the Ehrenfest time scales
logarithmically with k™! for chaotic systems.

The validity of the correspondence principle beyond the Ehrenfest time
scale has to be probed in subtler ways. The dynamics of the systems at much
later times is encoded in the properties of the eigenvalues and eigenfunctions
of the system. Hence, these are the quantities in which one is often most
interested.

Superficially it might seem as though the eigenvalues and eigenfunctions
have little relation to the classical dynamics in the & — 0 limit. However, this
is not true as we saw for the Floquet states for the kicked rotor. Beyond the
obvious visual similarities between the classical phase space and Husimi func-
tions of the Floquet eigenstates, more generalized connections exist for the
eigenvalues and eigenfunctions, in terms of statistical properties and other-
wise. This implies, in particular, that information about the classical chaotic
structures, including the rather complex homoclinic and heteroclinic tan-
gles uncovered by Poincaré, must somehow be mysteriously embedded in the
eigenproperties as well.

1.2.5 Semiclassical description of chaotic systems

The connection between a quantum system and its classical counterpart is
rooted in the classical limit as h approaches zero. This limit is nontrivial and
requires formalism. This section provides a brief overview of semiclassical
tools for small . We begin with the Bohr-Sommerfeld quantization rule
applicable to integrable systems and then explore modern tools for other
dynamical regimes.

Bohr-Sommerfeld quantization rule

Consider a one-degree-of-freedom quantum system described by the Hamil-
tonian operator Hy, = —~%% + V(&), with a classical analog Hu(z,p) =
% + V(x). As the system’s Hamiltonian doesn’t explicitly depend on time,
the total energy of the classical system remains constant. The phase space

trajectories are confined to curves H(z,p) = E, where E is the initial energy.
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The integral
J(E) = }[ o (1.42)

along these curves has dimensions of action, equivalent to Planck’s constant,
2mh.

The semiclassical regime can be defined by the condition J (E) ~ h. In
this limit, it can be approximated that the eigenenergies F,, of ﬁqu satisfy
the condition

1
o (B ) = 2nehi <n—+—§) form=10,1,2,... (1.43)

For systems with more than one degree of freedom, a generalization of
this approximation can be obtained for integrable systems. In such cases,
classical trajectories in phase space are confined to d-dimensional torus-like
manifolds, allowing the definition of action integrals for each path, leading
to d quantization conditions, similar to Eq. 1.43, associated with d quantum
numbers ny,ny,...,ng. This generalization for systems with d > 1 degrees
of freedom, valid for integrable systems, is known as the Einstein-Brillouin-
Keller (EBK) quantization rule.

Gutzwiller trace formula

The Bohr-Sommerfeld quantization rule and its extension to systems with
multiple degrees of freedom provide a comprehensive description of the eigen-
levels E,, and eigenfunctions ¢n(r) for quantum systems with integrable clas-
sical counterparts. However, this semiclassical approach is limited to systems
exhibiting invariant tori in their classical phase space, making it unsuitable
for other types of dynamics. An alternative approach, semiclassical trace
formulas, offers a solution to analyze quantum spectral properties across var-
ious dynamical regimes, including integrable, nearly integrable, fully chaotic,
and mixed phase-space systems.

In the fully chaotic regime, we have the Gutzwiller trace formula [104].
The spectrum of ﬁqu, comprising energies E, E», ..., can be expressed in
terms of the density of states function:

d(E) =) 6(E - E,) (1.44)

Quantum mechanically, d(E) can be represented in terms of the trace of the
Green function G(E), giving the approximation its name. Typically, d(E)
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can be split into two components: a smooth secular part, dw(E), associ-
ated with the classical system’s energy surface phase space volume, and the
oscillating term, dos.(F), accounting for quantum fluctuations.

A semiclassical trace formula connects the purely quantum quantity desc(E)
to a classical counterpart, which is a sum over all periodic orbits j in classical

motion. For chaotic classical dynamics, the Gutzwiller trace formula is given
by:

1 1 1 s
dosc(F) = — ———————cos | =S5, — V= 1.45
(&) ﬂhzj:\/det(Mj—n (h d J2)- (L:55)
\00\6
Here, S; is the action integral along orbit j, is the monodromy matrix

describing orbit stability, and v; is the Maslov index, an integer related to
winding around the orbit.

The Gutzwiller trace formula, Eq. 1.45, is applicable in the semiclassical
regime and establishes a strong connection between quantum systems and
their classical counterparts. This link is evident even in chaotic dynamics,
where the Bohr-Sommerfeld-style quantization rule is not applicable. This
connection implies that classical dynamics, particularly its chaotic or regular
nature, influences purely quantum properties of the system. In Section spec-
tralstatistics, we explore how this relationship manifests for statistical quan-
tities related to the quantum spectrum and eigenfunctions.

Orbit proliferation and convergence issue

The right-hand side of the Gutzwiller trace formula, Eq. 1.45, represents
the classical summation over periodic trajectories and is divergent, requir-
ing careful definition due to the creation of delta functions. This divergence
is linked to the exponential proliferation of periodic orbits in chaotic sys-
tems, quantified by the Lyapunov exponent A, which measures the rate of
divergence of nearby trajectories. The monodromy matrix describes how a
perturbation from a periodic orbit evolves over one time period of the orbit.
The monodromy matrix of a trajectory j satisfies det(M; — 1) ~ exp(AT;),
where 7; is the period of orbit j. Simultaneously, A governs the total number
of orbits with period 7; less than some value 7, increasing as 7~ Lexp(AT).
The exponential growth of terms with rapidly decreasing magnitude persists.

To address the lack of convergence in the classical sum, one approach is
to locally smoothé( the quantum density of states. This involves replacing
the Dirac peaks %E — E,) in Eq. 1.44 with a function d¢(E — E,) having
a finite width ¢ (while maintaining integral unity). A simple method is to
introduce a small ithaginary part € to the energy (E — E + i¢), yielding a
Lorentzian functién ée(E — E,) = (7)7'e/[(E — E,)* + €2].
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CHAPTER 1. INTRODUCTION

Local smoothing of the quantum spectrum finds various applications. For
instance, it can simplify the spectrum when experimental accessibility to fine
details is limited, such as when the system interacts with its environment,
introducing finite coherence times and broadening energy levels. Another
source of smoothing arises from finite temperature, leading to energy-scale
averaging on the order of kg7. In some scenarios, the probing scale for the
quantum spectrum may be substantially larger than the mean level spac-
ing A (i.e., the average energy spacing between successive energy levels).
This approach has proven valuable in studying thermodynamic properties
of micron-sized quantum dots in GaAs/AlGaAs heterostructures, where the
mean level spacing is small compared to the temperature range of interest.
In such cases, the Gutzwiller trace formula (or its analog in other dynamical
regimes) offers precise predictions and an intuitive interpretation based on a
limited set of classical periodic orbits.

Breaking the mean level spacing scale

Describing the fine structure of a quantum spectrum in a semiclassical man-
ner presents challenges. To resolve the mean level spacing (A) in a system
with d degrees of freedom, very long orbits with periods (7;) exceeding the
Heisenberg time (tg = £ ~ h?1 - 0 — oo) must be included in the semi-
classical sum. The number of such orbits grows exponentially.

To address these issues, it is crucial to determine if the semiclassical ap-
proximation remains valid for such long orbits. Since the limits 7 —s 0 and
t — oo do not necessarily commute, and a critical timescale * for each h
exists beyond which semiclassical approximations may fail. It was initially
suggested that ¢* might correspond to the Ehrenfest time (tg), related to
wave-packet spreading. While ¢z exhibits logarithmic ~ dependence, sug-
gesting a shorter timescale, studies showed that semiclassical propagation
could exceed tp. The concept of “long-term accuracy” emerged, indicating
that diffraction effects might prevent reaching the Heisenberg time in deep
semiclassical limits.

Even if t* is larger than ¢y, the proliferation of orbits poses a challenge.
The semiclassical sum in the Gutzwiller formula is divergent, requiring signifi-
cant cancellations between terms. Understanding these cancellations and the
structure of classical periodic orbits becomes essential. Mathematical objects
with less singular behavior, such as spectral determinants, were introduced
to address this issue. Semiclassical expansions for these objects exhibit less
divergence. Techniques like dynamical zeta functions and cycle expansions
were also introduced to express the quantum spectrum in alternative ways.

An improved understanding of long periodic orbits has helped enhance
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1.2. THEORETICAL BACKGROUND

the convergence properties of semiclassical periodic orbit expansions. The
“cycle expansion” method, which decomposes longer orbits into shorter ones
and regroups terms, has improved convergence properties.

In summary, semiclassical trace formulas establish a connection between
quantum and classical systems by expressing quantum energy spectra in
terms of classical periodic orbits. Short orbits provide a simple interpre-
tation of quantum behavior while resolving finer spectral details involves
considering much longer orbits and employing sophisticated techniques like
spectral determinants, dynamical zeta functions, and cycle expansions.

1.2.6 Random Matrix Theory

In the previous section, we discussed the existence of semiclassical approx-
imations like the Gutzwiller trace formula, which establishes a connection
between quantum and classical systems. This suggests that the qualitative
nature of classical dynamics influences quantum properties. While Einstein-
Brillioun-Keller quantization hinted at this influence on eigenstates, it couldn’t
predict eigenstates for chaotic systems. The goal is to understand these prop-
erties quantitatively, a subject known as spectral statistics.

One crucial tool for this purpose is random matrix theory. It was initially
introduced by Wigner to explain the spectral statistics of strongly interacting
many-body systems, like heavy nuclei, long before the dynamical distinctions
and Gutzwiller trace formula were understood. Since then, the role of chaos
and the connection between trace formulae and random matrix theories have
become evident. A remarkable example of this connection between seemingly
unrelated concepts—chaotic trajectories and random matrices—has emerged
from the study of spectral statistics. As mentioned in the introduction,
random matrix theory implies universality in statistical properties, meaning
that much system-specific information vanishes from these properties. Sur-
prisingly, even though chaotic systems have unique trajectories, these trajec-
tories when considered in terms of their quantum counterparts and weighted
by their instabilities, uniformly explore their respective phase spaces. This
uniformity results in a loss of information, leading to universal features in
widely different systems which can be captured by random matrix theory.

| e s, sl
Spectral statistics a\[‘*“\é \abaik"/\"ﬁ ° 531&\@!}-& witha i
For any quantuny€ystem having a classical limit, three distinct energy scales
can be defined. S E9, is the scale at which classical dynamics changes appre-
ciably. This energy scale is independent of Planck’s constant, i.e., SEY ~ RO.
The Thouless energy ET}‘ = h/tg ~ h', where the “time of flight” tq is the
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typical classical time to diffuse through the system. Axd _the mean energy
level spacing, A, which scales as ~ h? where d as the number of degrees of
freedom)x. y)

In the semiclassical limit  — 0, with two or more degrees of freedom,
there is a separation between these energy scales. Within an energy range
smaller than § E', where classical dynamics remains constant, there may be a
very large number of Thouless energy slices, each, in turn, containing a very
large number of discrete energy levels. Energy levels in different Thouless
slices are essentially independent and the expected value of any spectral
quantity (f({E;})) can be taken to be the statistical mean over various such
slices.

One fundamental quantity that can be defined in this manner is the mean
density of states (5(E)), which counts the average number of energy levels in
a specified energy interval. The local mean level spacing A is the inverse of

\&} (p(E))>(p(E)) is primarily determined by the volume of the classical energy
N0
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surface H(r,p) = E and is independent of the character of the classical
motion. Correlations between energy levels are usually studied by trans-
forming the original eigenenergies {E1, E», E;, ...} into a rescaled sequence
{z1,22,23,...} with the same fluctuations properties but a mean density of
one.

Several relevant quantities have been constructed to measure the fluc-
tuation properties of {z;}. The number of rescaled levels Z; in an inter-
val of length r near an energy F, is denoted by Ng(r). By construction,
(Ng(r)) ~ r since the average density of z; is one. However, ¥2(r), which
measures the variance of Ng(r), contains valuable information about the fluc-
tuation properties of the spectrum. It provides insights into how likely levels
are to cluster at short ranges (for small r) and how elastic or rigid the spec-
trum is at large ranges. Another important quantity is the nearest neighbor
density P(s), which measures the probability of two successive rescaled levels
x; and x4, being separated by a distance s.

For a Poisson sequence of energies where the {z;} are independent num-
bers randomly taken with a mean density of one,

PPoisson(s) = exp(—s), (146)
E12)oisson (T) =T (14’7)

Poisson statistics represent the extreme case of no correlation. Compar-
ing these statistics with those derived from a specific spectrum provides a
quantitative assessment of the amount of correlations present.
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Random Matrix Ensembles

Random matrix ensembles were introduced into physics by Wigner in the
1950s to describe the statistical properties of slow neutron resonances, which
correspond to highly excited states of nuclei. Due to the complexity of nuclear
systems, it was deemed unfeasible and unhelpful to individually evaluate
these energy levels. Instead, Wigner suggested describing their statistical
properties using random matrices.

Quantum Hamiltonians, whether for nuclei or simpler systems like the
Hydrogen atom, can be represented as matrices because they act as linear
operators on the space of wavefunctions. To make the modeling manageable,
a finite IV x N matrix is used to represent the neighborhood of a given energy
E. Wigner’s idea was that, due to the complexity of nuclear dynamics, the
experimentally obtained spectral statistics of neutron resonances match with
random matrix elements.

However, the random matrices are constrained by the symmetries of the
physical systems. The matrix representing a quantum Hamiltonian must
be Hermitian. For example, Hamiltonians for nuclei are invariant under
rotations of physical space, and they should be analyzed with fixed values of
relevant quantum numbers that arise from system symmetries. Time reversal
invariant Hamiltonians, for systems without spin, are represented by real
symmetric matrices.

Wigner introduced?z‘!@ndom matrix ensembles to account for these
symmetry constraints: the Gaussian Unitary Ensemble (GUE) for systems
with broken time reversal invariance, and the Gaussian Orthogonal Ensem-
ble (GOE) for systems with preserved time reversal invariance and no spin
degrees of freedom. These ensembles serve to model the spectral statistics of
these complex systems.

Spectral statistics, such as the nearest neighbor distribution P(s) and the
variance ¥%(r), have been computed for these ensembles. The distributions
for P(s) in the GOE and GUE cases are characterized by strong level repul-
sion, meaning that zero-distance spacings are avoided, and for small spacings,
the probability of occurrence is low compared to uncorrelated spectra. The
statistics for ¥2(r) in random matrix ensembles exhibit level rigidity, with
fluctuations around the mean value significantly smaller than in Poissonian
statistics, even for long sequences.

Here are expressions for P(s) in the random matrix ensembles:

PGOE(S):gse—# (GOE), (1.48)
32 2
PGUE(S):;Q-S%—“T (GUE), (1.49)
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Additionally, the asymptotic expression for ¥%(r) in the GOE case as r
becomes large is given by:

(1.50)

®

2
Shr() ~ S In(r) (3> 1)
0
N W &)( \®This result illustrates the strong level rigidity in random matrix statistics.
A

Quantum chaos and Random matrices

Random matrix ensembles, like GOE or GUE, offer random representations
of model Hamiltonians, allowing the evaluation and comparison of spectral
statistics such as the nearest neighbor distribution P(s) and ¥2(r) statistics
with other models or experimental data. When applied to nuclear resonances,
random matrix theory (RMT) predictions have shown strong agreement with
actual nuclear spectral statistics.

Bohigas, Giannoni, and Schmit proposed in 1984 that even “simple” sys-
tems could exhibit statistical behavior similar to RMT [105]. They demon-
strated this with numerical analysis of two-dimensional billiards, such as the
stadium billiard, which displayed RMT-like statistics. These systems, while
not complex, are chaotic despite having only two degrees of freedom and a
simple Hamiltonian.

This led to the conjecture that “simple” systems could exhibit RMT-like
spectral fluctuations if their classical analog dynamics were chaotic. The
role of complexity in nuclear systems is seen as providing chaotic dynamics
rather than being inherently complex, as originally suggested by Wigner.
Although there isn’t a complete formal proof of the Bohigas, Giannoni, and
Schmit (BGS) conjecture, it is strongly supported by semiclassical theory.
The connection between semiclassical trace formulae and random matrices
has been established through the uniformity principle of periodic orbits in
chaotic systems.

Berry and Tabor [106] showed that generic integrable systems exhibit
spectral statistics closer to the Poissonian case, lacking level repulsion and
rigidity. Mixed dynamics, where chaos and regularity coexist, is more com-
plex and requires the implementation of non-universal time scales, leading to
transition matrix ensembles with non-universal characteristics.

Analyzing the kicked rotor suggests that the near-integrable regime dis-
plays Poisson-like statistics, while the strongly chaotic regime exhibits RMT-
like statistics. This observation aligns with the comparison of sample Poisson
and random matrix spectra. Further calculations confirm excellent agreement,
with the expressions provided.
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Random matrix theory and quantum chaos are connected to important
mathematical relations, including the Riemann zeta function and the Rie-
mann hypothesis. The statistical properties of the imaginary components of
the non-trivial zeros of the Riemann zeta function match those of the GUE,
and there is an analogous Selberg trace formula, exact for the Riemann zeta
function. Consequently, the Riemann zeta function serves as a mathemati-
cally rigorous platform for the study of quantum chaos.

1.2.7 The quantum measurement problem

The collapse of the wavefunction is probably the biggest chink in the glorious
armor of quantum mechanics. While every quantum system evolves in a
unitary, deterministic fashion following the Schrédinger equation, the process
of measurement is somehow exempt from this rule. Although this poses no
problems for the practicing physicist, the unsatisfactory state of affairs has
been echoed time and again by all who have given it any serious thought
[107-111].

Despite long-standing efforts, there is no universally accepted solution to
the measurement problem. Most approaches can be broadly classified into
one of two buckets.

Epistemic approaches place the focus on knowledge and experiences.
They suggest that the wavefunction doesn’t represent the physical reality
itself but is merely a tool for tracking what agents know about it. Interpre-
tations like the Copenhagen interpretation and QBism adhere to this view.

On the other hand, in the ontic approaches, the wavefunction is proposed ’\/\M;x{ (o '\‘\'QJV\C\, &
to completely and precisely describe reality at measurements
do not collapse the wavefunction but result in enfafiglement. The many-

worlds interpretation is a well-known example of this stance.
Below we briefly outline some of the more popular approaches.

The Copenhagen interpretation

Observations not only disturb what is to be
measured, they produce it.

PASCUAL JORDAN [112]

Historically, the measurement problem can be traced back to Niels Bohr’s
“Copenhagen interpretation”, where he proposed that the physical properties
of quantum systems depend on experimental conditions, including measure-
ments. Bohr suggested that measurement is a fundamental aspect of defining
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physical quantities in quantum systems. However, his interpretation did not
view this dependence as causal but rather as a relational concept, akin to the
relative nature of space and time in special relativity. These among other
views led to the famous Bohr-Einstein debates [113], where Einstein took
a realist position, contending that measurements reflect an independently
existing reality. He argued that if a physical quantity could be predicted
with certainty without disturbing a system, then there exists an element of
physical reality corresponding to that quantity. In this realist perspective,
observations merely passively reflect what is independently real.

The Copenhagen interpretation posits that, whenever an observation is
made, the wavefunction of a quantum system collapses instantly to an eigen-
state of the observable being measured. Many questions have been raised
[114] regarding what constitutes an observation. “But laws of nature differ-
ing from the usual ones cannot apply during a Ineasurement,” Schrédinger
writes in [107] (translated in [115]), “for objectively viewed it is a natural
process like any other, and it cannot interrupt the orderly course of natu-
ral events.” This departure from the deterministic unitary evolution during
measurement, leading to a definite outcome later came to be called the ‘mea-
surement problem’. “It would seem that the theory is exclusively concerned
about ‘results of measurement’, and has nothing to say about anything else”
wrote John Bell [108]. These objections have remained largely unanswered,
and are considered to belong to the domain of philosophy rather than physics.

In areview paper, Bassi et al. [116] write “The Copenhagen interpretation
(Bohr, 1928) [reprinted in Wheeler and Zurek (1983)] postulates an artificial
divide between the microworld and the macroworld, without quantitatively
specifying at what mass scale the divide should be. Microscopic ob jects obey
the rules of quantum theory (superposition holds) and macroscopic objects
obey the rules of classical mechanics (superposition does not hold). During a
measurement, when a microsystem interacts with a macrosystem, the wave
function of the microsystem “collapses” from being in a superposition of the
eigenstates of the measured observable to being in just one of the eigenstates” .
The Copenhagen interpretation gives no definite answer to why and where
this ‘shifty split’ between the classical and the quantum is to be placed.
Worse yet, it provides no rationale as to why a measurement does not follow
the Schrédinger equation. In Chapter 4 we investigate the consequences of
such a split. Wigner and von Neumann implicated conscious observation
as the cause of wavefunction collapse. von Neumann found that lifting the
split between the classical and quantum worlds led to entanglement between
the system and measurement apparatus. If we assume that the system and
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apparatus have states |1)s) and [¢4) before the measurement,

|¢s) [a) T2 S " en [08) [ a (1.51)

Bell has echoed the discomfiture of bringing consciousness into fundamental
theory best—“What exactly qualifies some physical systems to play the role
of ‘measurer’?” [108] he asks. Could the wavefunction of the universe have(be
waiting for all this time for a conscious being to measure it so it could finally
collapse? He admonishes the use of such vague notions as ‘measurement’ and
‘observer’ in a fundamental theory of the universe.

1.2.8 Decoherence

.. a normal consequence of interacting quan-
tum mechanical systems. It can hardly be de-
nied to occur—but it cannot explain anything
that could not have been explained before.
Remarkable is only its quantitative (realistic)
aspect that seems to have been overlooked for
long.

HEINZ-DIETER ZEH [117]

As desirable as it may be to study and experiment on isolated systems,
no system can be truly isolated. Microscopic quantum systems inevitably
interact and get entangled with the environmental degrees of freedom, which
are outside our ability to directly measure or control [118]. Hence the effect
of this entanglement can only be treated in a statistical sense. In essence, we
average the state of the system over all possible realizations of the environ-
ment, by taking a partial trace over the environment degrees of freedom of
the system-environment density operator. This has the effect of decaying the
off-diagonal terms in the reduced system density matrix, which suppresses
interference effects and hence the process is called decoherence. This process
has a very short time scale and can occur in the presence of a very minimal
environment [119]. Tt has a big role to play in the appearance of the classical
world from quantum laws [120]. It must be stated that decoherence is not an
interpretation as it is a direct consequence of the laws of quantum mechanics.

The decoherence program has been able to shed light on two aspects of
the quantum measurement problem

1. Definite outcomes in the measurement process can be explained in
terms of effective superselection rules imposed by the form of the in-
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teraction with the environment. These emergent states are called the
pointer states [121-124].

2. The decay of the coherences in the density matrix in these pointer bases
explains why interference effects do not manifest at the macroscopic
scale, despite being governed by quantum mechanics.

It is also possible to derive Born’s rule using some plausible assumptions
based on the ideas of decoherence [125-127]. The difficulty of shielding from
the environment gives rise to the appearance of irreversibility in the classical
limit [128]. Although decoherence is unable to completely solve the quan-
tum measurement problem, it illuminates parts of the puzzle of, quantum to
classical transition. A

Ane

1.2.9 Objective collapse theories

\@e/;ollapse models)[116, 129] do not need the intervention of a conscious

observer, accomplished by making non-linear and stochastic adjustments to
the Schrodinger equation. These modifications introduce the concept of wave
function collapse into the standard quantum evolution. These models posit
that there is an intrinsic propensity of particles to spontaneously localize.
The free parameters of these models are tuned so as to closely approach
the quantum mechanical predictions while also explaining the appearance
of classical behavior of macroscopic objects [130]. A wide raw
models with different localization basis have been developed: {131, 132] and
[133] localize in the energy, momentum and spin basis respectively, while
the Ghirardi-Rimini-Weber (GRW) [134] and the Continuous Spontaneous
Localisation (CSL)[135] models localize in the position basis.

The fundamental concept underlying the dynamical reduction program
can be summarized as follows: Spontaneous and stochastic wave function
collapses occur continuously, affecting all particles, whether they are in iso-
lation or interacting with others, be it in the form of individual atoms or
within intricate measuring devices. It is essential that these collapses remain
infrequent and subtle when dealing with microscopic systems to preserve
their quantum characteristics as dictated by the Schrédinger equation. Si-
multaneously, these collapses must cumulatively impact the global system
when a multitude of particles assemble to create a macroscopic entity. In
such cases, numerous collapses, each involving a single particle, influence
the macro-system frequently, ultimately compelling the wave function of the
macro-system to localize in space.
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On a mathematical level, the dynamical reduction program is executed
by introducing novel terms into the Schrédinger evolution with specific char-
acteristics:

1. Nonlinearity: These new dynamics must break the superposition prin-
ciple at the macroscopic level, ensuring the localization of the wave
function of macroscopic objects.

9. Stochasticity: When describing measurement-like scenarios, the dy-
namics must elucidate why outcomes occur randomly, conforming to
the Born probability rule.

3. Amplification Mechanism: The introduced terms must have minimal
effects on the dynamics of microscopic systems while having a signifi-
cant impact on large, many-particle systems like macroscopic objects,
leading to their classical-like behavior.

4. Superluminal signaling: It is vital that the nonlinear terms do not en-
able superluminal signaling to preserve the causal structure of space-
time. It is prevented by introducing stochasticity.

It is noteworthy that these requirements are highly demanding, and there
is no inherent guarantee that they can be consistently met. One of the notable
achievements of collapse models is their ability to demonstrate the feasibility
of implementing this program in a coherent and satisfactory manner.

Stripped of intricate details, the core dynamics can be expressed through
the following stochastic differential equation for the wave function:

P 5, . . N2
d ) = [—%Hdt +Va (A - (A)t) AW, — -;- (A = (A)t) dt] ), (1.52)
In this equation, H is the quantum Hamiltonian of the system, (A)t repre-
sents the quantum expectation value of the self-adjoint operator A at time
t, A is a positive constant that determines the strength of the collapse mech-
anism, and W; is a standard Wiener process.

Equation (1.52) can be conceptually grasped quite easily. It character-
izes a diffusion process occurring within the unit sphere of the Hilbert space,
ensuring the conservation of the wave function’s norm. H induces a unitary
“rotation” on this sphere, while the remaining terms work in a stochastic
manner to collapse the wave function toward one of the eigenstates of the
operator A. The interplay between these terms depends on their relative
strength. If the dynamics influenced by H predominates, the evolution re-
mains mostly deterministic with only slight blurring by the collapse terms

53



CHAPTER 1. IN TRODUCTION

ent collapse models can be substantial, they all share a common structure
captured by Equation (1.52). This consistency is not coincidental. It can
be demonstrated that the necessity of preserving the principle of no-faster-
than-light signaling, coupled with the requirement of norm conservation, es-
sentially dictates the form of possible modifications to the Schrédinger equa-
tion. Thus, one could argue that collapse models are not merely one of
several possible approaches to modifying quantum theory but are, in a sense,
the exclusive path to do so.

Collapse models in position space

The choice of the operator A in Equation (1.52) plays a pivotal role in de-
termining the basisA in which the wave function localizes. If A equals the
Hamiltonian (/?l = H), the collapse takes place in the energy basis, and if A
corresponds to momentum (/i = p), the collapse occurs in the momentum
basis, and so forth. Given that the primary motivation for introducing col-
lapse models is to account for the classical behavior of macroscopic objects,
notably their well-defined positions in position space, the most straightfor-
ward and intuitive choice is to set A equal to the position operator ¢ or some
function of it. All the collapse models found in the literature follow this pat-
tern. The first model of this kind was the GRW (Ghirardi-Rimini-Weber)
model [136], defined in terms of a discrete jump process while maintaining
dynamic equivalence with Equation (1.52). This concept later evolved into
the CSL (Continuous Spontaneous Localisation) model [137], which includes
identical particles in its description. Concurrently, the QMUPL (Quantum
Mechanics with Universal Position Localisation) model [138] emerged as a
short-distance approximation to both the GRW and CSL models [139]. The
DP (Diosi-Penrose) model [140] also deserves mention as an initial attempt
to connect wave function collapse to gravity.

Qualitatively, these models share a common feature: they induce wave
function collapse in space, and the larger the collection of particles in inter-
action with each other is, the faster the collapse of the macroscopic object.
Quantitatively, these models exhibit variations, sometimes substantial. They
share another common trait: the noise responsible for the collapse of the wave
function also induces Brownian-type motion in the system. In momentum
space, the wave function acquires increasingly higher components, resulting
n a steady increase in kinetic energy. While this increase is small and hardly
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detectable with current technology, it remains an undesirable aspect of these
models.

Recently, a partial solution to this issue has been found. It has been
demonstrated that it is possible to introduce dissipative effects into collapse
models without altering their collapse properties. This achievement has been
successful for the QMPUL model [141], the GRW model [136], and the CSL
model [142], giving rise to what is termed dissipative models (dQMUPL,
dGRW, dCSL). Intriguingly, this approach encountered more challenges in
the case of the DP model [143]. In all these instances, energy no longer in-
creases but instead thermalizes to a finite temperature associated with the
noise responsible for the collapse. A common misconception used as an ar-
gument against these models is that collapsing the wave function in space
increases momentum uncertainty, and hence kinetic energy, due to Heisen-
berg’s uncertainty principle. This can lead to nonconservation of energy in
the macroscopic limit, something which is not observed in practice. The
dissipative modifications to these models not only demonstrate that energy
increase is not an inherent feature of collapse models but also that, in fact,
energy can decrease if it is initially higher than the noise energy. Dissipative
collapse models suggest the following scenario: the noise causing the collapse
is a real field filling space, at thermal equilibrium at a certain temperature
T, and it nonlinearly couples with quantum systems, causing wave function
localization in space while simultaneously thermalizing them to their own
temperature. This second effect is akin to how classical particles behave in
a thermal environment. Although energy is not conserved in this process,
there is a path toward restoring energy conservation by considering the sys-
tem’s reaction to the noise, similar to classical physics where fundamental
equations of motion (Newton’s laws) lead to energy conservation. However,
for collapse models, achieving this requires establishing an underlying theory

from which they emerge as phenomenological models—a task that is yet to

be completed((see [4] for an initial attempt);~but their argument suggests

that its feasibility is notunreasonable. < ,F
is «{o

U A oo . \QO%Q Jt
ZWo can it Yo %C‘ (o
Ve retwi
Thus far, all models have been defined with white noise in time, which ks l 7
is a convenient mathematical idealization. Real noises invariably have a LO\ afge )

frequency cutoff. Colored-noise-based collapse models have been introduced
[144-148], demonstrating that they share the same essential properties as
the original models, although specific details may differ, particularly in cases
with low-frequency cutoffs.
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The mass-proportional CSL model

The most extensively studied model in the literature is the mass-proportional
version of the CSL model [149]. Its dynamics can be described by the fol-
lowing stochastic differential equation:

dgy) = [—%f{dt +§ &z (M(x)— (M(x»t) dW,(z)

0
—2—;% / / PrdyG(z — y)(M (z)
— (M (2))e) (M (y) — (M (y))e)] |¢r) (1.53)

In this equation, v (with dimensions of [L37!]) represents the model’s col-
lapse strength, my is a reference mass, typically set to the mass of a nucleon,
and M(z) = ma' (z)a(z) is the mass density operator, where af(z) and a(x)
are the creation and annihilation operators for a particle at point z in space
(spin is ignored in this context). These operators serve as a suitable replace-
ment for the position operator in the second-quantized language. W, (z) is a
family of Wiener processes, each associated with a specific spatial point and
characterized by an average of zero. These processes are “white” in time but
exhibit a Gaussian correlation function in space, given by

o 7
: EW@)W,(w)] = 8(t - 5)Ga —y), _~ MO Y
wh ““;%&3 % | i = dependence!
(0= _ <N D
oot e L], -
VA The CSL model relies on two key phenomenological parameters: the col-

lapse strength v and the correlation length of the noise, rc. Typically, v is
substituted with X\ = /(47r%)3/2, which has the dimensions of a rate e A
Experimental analysis continually imposes increasingly stringent constraints
on these parameters.

The amplification mechanism

The CSL equation (1.53) shares the common objective of wave function lo-
calization in space, its effectiveness determined by the relative strength in
comparison to the Hamiltonian H. To delve deeper into how the collapse
terms operate, consider a system, particularly a rigid object, where the cen-
ter of mass exists in a state that spans a distance Az much smaller than
rc. In such cases, it can be demonstrated that the collapse is nearly negligi-
ble. Essentially, the degree of delocalization is too minuscule, and the noise,
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capable of resolving only distances greater than r¢, already perceives it as
well-localized. However, if the extent of delocalization exceeds r¢, the noise
compels the wave function to collapse at a rate roughly approximated by:

A = Mn®N. (1.54)

Here, 7, as mentioned earlier, represents the collapse rate for a single nu-
cleon, n quantifies the number of nucleons within a volume of rd, (reflecting
the density of matter), and N counts how many such volumes can fit within
the space occupied by the system (indicating the total size of the system).
Equation (1.54) encapsulates the mathematical expression of the amplifica-
tion mechanism: the larger the system, the swifter the collapse. This means
it is possible to select a specific combination of values for v and rc in such
a way that, at the microscopic level, CSL closely resembles standard quan-
tum mechanics. Simultaneously, at the macroscopic level, it compels wave
functions to be tightly localized in space. Consequently, the model offers a
unified framework for describing both the quantum properties of macroscopic
systems and the classical characteristics of macroscopic objects. It notably
addresses the quantum measurement problem. In the literature, two sets
of CSL parameters have been proposed. The initial proposal advocated for
A= 10" 57! and rc = 1077 m. More recently, Adler has suggested signifi-
cantly enhanced values for A, driven by the necessity to make wave function
collapse effective at the latent image formation level in photographic pro-
cesses. The values proposed by Adler are approximately 10°%2 times larger
than the standard values for r¢ = 1077 m and roughly 10"*? times larger
for r¢ = 107% m [150].

Experimental tests

Collapse models introduce explicit modifications to the Schrédinger equation,
leading to predictions that, in most cases, deviate slightly from those of stan-
dard quantum mechanics and are subject to experimental verification. Two
categories of tests, interferometric and non-interferometric, are employed to
evaluate these models.

Interferometric experiments represent the most direct approach to as-
sess collapse models. Given that their primary objective is to preclude the
existence of macroscopic superpositions, the logical approach is to take a
macroscopic object, prepare it in a superposition of eigenstates, maintain
it for an extended duration, and then observe the presence of quantum in-
terference. Objective collapse models predict no interference, contrary to
the expectations of ordinary quantum mechanics. However, conducting such
experiments is exceedingly challenging due to various technical hurdles. A
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CHAPTER 1. INTRODUCTION

notable achievement by Markus Arndt’s group in Vienna involved superim-
posing and detecting quantum interference of the center of mass of a macro-
molecule with a mass of 20,000 atomic mass units (a.m.u.), currently a world
record [151]. Notably, neither Adler’s values for A and ¢ nor those of GRW
are refuted by this experiment, indicating that the mass involved, the su-
perposition times, and distances are sufficiently substantial. Optomechanics
holds the promise to advance beyond the current state of the art [152], al-
though it requires technological improvements.

Non-interferometric tests [153-156] aim to measure the Brownian motion
induced by the noise, independent of the collapse phenomenon. Two effects
have been investigated in particular. The first is the increase in kinetic en-
ergy. A system confined in a harmonic trap should exhibit more pronounced
tremors around the equilibrium position than predicted by quantum mechan-
ics. A recent experiment [157] involving a cantilever was able to set a strong
constraint, partially excluding Adler’s value for A. The second effect involves
the spontaneous emission of radiation from charged particles due to accel-
eration induced by the noise. Experimental data [158] in the X-ray region
have been gathered, which also exclude Adler’s value for \. Future experi-
ments hold the potential to establish bounds at least two orders of magnitude
stronger.

It is worth noting that interferometric bounds derived from matter-wave
interferometry are robust against alterations in the collapse equation, such
as the introduction of dissipative effects or changes in the type of noise [159].
As a result, these bounds serve the purpose of testing the entire class of
collapse models in space, not limited to a single model like CSL. Conversely,
non-interferometric tests are more sensitive to the specific characteristics of
the model.

For instance, predictions regarding spontaneous photon emission are highly
dependent on the autocorrelation function of the noise. While these bounds
are formidable, they may not encompass the entire spectrum of collapse
models. A combined approach that incorporates both interferometric and
non-interferometric experiments will likely be necessary to comprehensively
test collapse models and, consequently, the quantum superposition principle
in a meaningful manner. Collapse models offer a coherent framework for un-
derstanding the collapse of the wave function as a dynamic process, achieved
through suitable adjustments to the Schrodinger equation. While one antici-
pates that they should ultimately stem from an underlying theory, providing
a comprehensive description that accounts for both quantum evolution and
wave function collapse in an appropriate coarse-grained manner remains a
challenging, unsolved problem. In the interim, it remains intriguing and rel-
evant to subject these models to experimental scrutiny, primarily because
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1.2. THEORETICAL BACKGROUND

every such experiment essentially tests the fundamental superposition prin-
ciple, a cornerstone of quantum theory.

Until recently, collapse models primarily resided within the realm of the-
oretical conjecture. However, there has been a growing surge in experimental
endeavors to test them. Advancements in technology have enabled and will
continue to enable, the exploration of significant portions of the parame-
ter space. In due course, it will be captivating to observe whether nature
imposes limitations on nonlinear modifications to quantum theory or, even
more intriguingly, whether the superposition principle itself may encounter
its limits.

: : s, Yo 5
1.2.10 Bohmian mechanics A WVALAS = wdf“' | -\’\t§ U
Bohm'’s innovative approach (Bohm, 1952; Bohm and Bub, 1966; Bohm (\/va\’ 25,08
and Hiley, 1993) represents a noteworthy modification of de Broglie’s ini- ,\/\,stb
tiaf\mconcept from 1930. In the framework of Bohmian me- \‘y\ \lu
chanics, a system consisting of N nonrelativistic particles is described by @ _\D\I0 CKQ ‘
two fundamental components: a wave function () and a configuration N

Q(t) = (qi(t),...,an(t)) € R3, which encapsulates the positions of the
individual particles q;(t). This dual representation, denoted as (¢, Q) for

each moment t, governs the system’s state. The dynamics of the system \
are driven by two distinct equations. The evolution of the wave function
¥(t) follows the standard Schrédinger equation, ih(0/0t)) = Hv, while the
particle positions q;(t) in the configuration Q(t) are guided by the “guiding

equation”:
| R TR X4

e P aE :“‘_I
dt v, (Qh an) m; m w ’

where m; signifies the mass of the i-th particle. As a result, the particles
follow well-defined trajectories as described by Q(t), and their distribution
is shaped by the quantum equilibrium distribution p = |¢|*.

One of the central criticisms leveled against Bohm’s theory is its attribu-
tion of fundamental ontological status to particles. This view has encoun-
tered frequent opposition, as general arguments challenging the fundamental
nature of particles within any relativistic quantum theory have been ex-
tensively discussed (see, for instance, Malament, 1996, and Halvorson and
Clifton, 2002). L

1.2.11 Relative-state interpretations

Everett’s original proposal [160] for a relative-state interpretation of quantum
mechanics has led to various strands of interpretations. Everett’s theory
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was not explicitly detailed, leading to several interpretations. The standard
quantum mechanics system-observer duality introduces external “observers”
with stochastic indeterminism, but this raises issues when considering the
entire universe, where no external observers exist. Everett’s central idea
is to abandon duality, assuming the existence of a total state representing
the entire universe. This total state upholds the universal validity of the
Schrédinger evolution, postulating that all terms in the superposition of the
total state after measurement correspond to physical states.

Each of these physical states can be seen as relative to the state of the
other part of the composite system, known as “branches” in Everett’s origi-
nal proposal. This concept leads to the many-worlds interpretation and the
many-minds interpretation. In other words, each term in the final-state Su-
perposition represents an equally “real” physical state of affairs realized in
different branches of reality.

Those inclined toward relative-state Interpretations, such as decoherence
adherents, find compatibility with the Everett approach since it takes unitary
quantum mechanics as is, with minimal interpretive elements. On the other
hand, proponents of relative-state interpretations have used the mechanism
of decoherence to resolve associated difficulties.

Relative-state interpretations come with two core challenges: the preferred-
basis problem and the interpretation of probabilities in a framework where
every outcome occurs in some world or mind.

1.2.12 Consistent histories

The consistent (or decoherent) histories approach was introduced by Griffiths
[161-163] and further developed by Omnes [164-170], Gell-Mann and Hartle
[171-174], Dowker and Halliwell [175], and others. Reviews of the program
can be found in the papers by Omnes [168] and Halliwell [176, 177]; thought-
ful critiques investigating key features and assumptions of the approach have
been given, for example, by d’Espagnat [178], Dowker and Kent (179, 180,
Kent [181], and Bassi and Ghirardi (182].

In essence, the consistent-histories method aims to remove the central
importance of measurements in quantum mechanics. Instead, it focuses on
examining quantum histories, which are sequences of events depicted by sets
of projection operators ordered in time, and assigning probabilities to these
histories. Initially inspired by quantum cosmology, which explores the evolu-
tion of the entire universe as a closed system, this interpretation removes the
role of the external observer, unlike the Copenhagen interpretation, which
considers them essential.

The consistent-histories interpretation assigns probabilities to alternate
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sets of histories in a way that is consistent with the rules of classical proba-
bility theory while simultaneously obeying the Schrédinger equation. Omnés
writes in [183] that the consistent-histories framework is capable of justifying
why a certain set of classical questions can or cannot be asked of a quantum
system and can help us understand the limits of classical logic when applied
to quantum systems.

1.2.13 Generalized quantum measurements

The operational approach to quantum mechanics [184-186] has, among other
things, systematically expanded the notion of ideal projective measurements
to include imprecise and unsharp measurements. This has been fruitful for
several practical [187-189] as well as foundational problems [190, 191].

Unsharp measurements have been used to maintain coherence in the pres-
ence of noise [187]. Choudhary et al. [188] have suggested their application
in the measurement of qubit levels of a trapped ion. The evolution of a
superconducting qubit subjected to unsharp measurement has been investi-
gated [189]. Schemes for reliable state estimation with sequential [192] and
continuous-time unsharp measurements [193] have been suggested.

A special class of quantum measurements, called quantum non-demolition
(QND) measurements have been widely used in monitoring a quantum oscil-
lator [194, 195]. This form of measurement can in principle leave the quantum
state undisturbed. This could be useful for extremely high precision mea-
surements such as in certain schemes of gravitational wave detection. The
statistical behavior of a quantum oscillator subjected to a sequence of QND
measurements has been formally worked out by Matta and Pierro [196].

Textbook quantum mechanics exposes us to an idealized measurement
where the state collapses to an eigenstate of the measured observable. Such a
measurement, called von Neumann measurement, is described by projection-
valued measures (PVM). This is framed in terms of a set of projection op-
erators { P;} where the index i runs over all possible measurement outcomes
for the observable of interest. These have the following properties [197]

Hermiticity P.= P! rn
Positive-semidefiniteness
Idempotence 131-2 =
Orthogonality 131?] = i
Resolution of identity Ziﬁi =1

The probability of obtaining outcome i when measuring a state [¢) is
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given by
() = (y] B [y) (1.55)

and the post-measurement state becomes
[wposl) = Lﬁ{})
(V| P |y)

This can be readily generalized to density matrices where the probability of
measuring outcome i is given by

: (1.56)

p(ilp) = T B (1.57)

and the post-measurement state is

ﬁpost = T = A (158)

When the orthogonality condition on these projection operators is re-
laxed, it constitutes a generalized measurement. The most general class
of measurements in quantum mechanics are described in terms of positive
operator-valued measures (POVMs). A POVM constitutes a set of positive
semi-definite Hermitian matrices, {Fi} which satisfy the completeness rela-

> A=1 EQ\/K

Most measurements in experiments are not perfect projective measure-
ments. Generalized measurements help us describe such measurements math-
ematically. A rigorous mathematical formalism for the measurement process
has been developed [198]. We shall use a particular form of generalized mea-
surements in Chapter 3 to control the state of a particle in a harmonic trap.

1.3 Scope of the present work

The spectrum and its statistical properties have received the most attention
in studies on quantum chaos (see Section 1.2.4). We pose a different ques-
tion: What is the character of dynamics in such systems? Are there distinct
signatures in the quantum dynamics for parameter values at which the cor-
responding classical system is chaotic? Are there forms of dynamics in such
systems that are yet unexplored?
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The interpretation of a wave function in the position basis is that the
square of its absolute value is the probability density of a position measure-
ment[199]. Since a measurement in quantum mechanics changes the state of
the system, the notion of probability density is valid only in the case of an
ensemble of identically prepared systems. In contrast, we ask: If the same
system is repeatedly measured, what distribution would the measurement
outcomes follow? In the particular case of a quantum harmonic oscillator,
what form does this limiting distribution take?

Models of objective collapse (see Section 1.2.9) generally ascribe the col-
lapse process to intrinsic stochasticity or to the presence of external fields.
The Copenhagen interpretation places a nebulous dividing line between the
classical and quantum realms. All collapse processes occur when the two
realms talk to each other. We look into the prospects of taking this split
seriously. In particular, we imagine a situation where interaction between a
macroscopic and a quantum object might cause the quantum object to col-
lapse. Without considering any particular form for this interaction, and as-
suming it to be local, we ask: What are the repercussions of such interaction-
induced collapse processes?

1.4 Organization of the thesis

In Chapter 2 of this thesis, we delve into the realm of quantum dynamics. We
choose a system: the forced impact oscillator, which is known to be classically
chaotic. We investigate the dynamics of the corresponding quantum system.
Unlike its classical counterpart, it is incapable of displaying chaos. Even
though an isolated quantum system cannot exhibit sensitive dependence on
initial condition, we show that strange nonchaotic dynamics can occur in this
quantum system.

Chapter 3 deals with the statistical properties of repeated measurements
on a quantum system, in particular, the quantum harmonic oscillator. The
harmonic oscillator potential is chosen because of its analytical ease and im-
portance. Through numerical experiments and analytical calculations, we
show that the measurement record limits to a stable distribution. Remark-
ably, the limiting distribution is Gaussian, and we derive the analytical form
of this limiting distribution. Furthermore, we provide analytical expressions
for the mean and standard deviation of the distribution, demonstrating that
periodic measurements can be used to modify and control the oscillator. Our
exact results on the effects of periodic measurements of a harmonic oscillator
enrich our understanding of the statistical behavior of quantum measure-
ments in possibly the most well-studied potential in physics.
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II% Chapter 4 we explore the consequences of Interaction-induced waye.
function collapse. The Copenhagen Interpretation broposed a shifty split
between the macro and micro worlds, The split is unsettling as it is not

check for the same.

We conclude in Chapter 5 and provide future directions.

This thesis weaves together four distinct research works, each offering a
unique perspective on quantum dynamics, collapse mechanisms, and mea-
surement statistics. Qur findings not only advance our understanding of the
quantum world but also challenge existing paradigms, providing new insights
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Chapter 2

Strange non-chaotic dynamics
in a quantum system

2.1 Introduction

Bohr’s correspondence principle states that quantum systems should limit
to classical behavior in the appropriate macroscopic limit. Going in the re-
verse direction, it is reasonable to expect that classical systems with unique
dynamical features could have interesting dynamical signatures in the quan-
tum limit. Deterministic dynamical chaos is one such feature of classical
systems that has been shown to have distinct features in the quantum limit.
Such study has given rise to many models, distinguished among which are
the 2D billiards [200-203] and d-kicked systems [204-209]. Classical systems
with a one dimensional configuration space can be chaotic, provided they are
driven [210]. Although there have been some studies on quantum analogs
of such classical chaotic systems [211-216], little has been explored about
driven systems in piecewise smooth potentials.

Impacting systems with piecewise-smooth potentials have a unique route
to chaos, marked by a sudden transition from a periodic orbit to a chaotic
orbit at grazing (ie. zero velocity impacts), prompting us to ask: what unique
dynamical features do impacting classical systems exhibit in the quantum
limit? We use a simple model system to probe this question.

Simple model systems are one of the cornerstones for understanding any
discipline. Paradigmatic models like the harmonic oscillator for integrable
systems or the Ising model in statistical mechanics help us deepen our un-
derstanding without unnecessary complications. In a similar vein, we probe
our question using a simple model system.
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Figure 2.1: Schematic diagram of the simple impact oscillator.

2.2 The classical impact oscillator
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Figure 2.2: Grazing bifurcation of the Nordmark map with v = 0.05 and
a = 0.65 [217],

The system used in this chapter is the impact oscillator comprising a
mass-spring system with sinusoidal forcing (Fig. 2.1), where the mass has a
possibility of impacting a wall. With dissipation, such a system exhibits a
sudden onset of a large amplitude chaotic oscillation when the mass grazes
the wall. This type of bifurcation, called a grazing bifurcation was studied
by Nordmark [218] in terms of a stroboscopic map

Tpyl = QTp +Yp +p for z.. < 0 %
n >
Ynt1 = —YZTp
{$n+1 :“\/-Tn+yn+p forz. >0 ‘g;

BE 2
Ynt1 = —YT Tpn

where v and « capture the characteristics of the oscillator dependent on the
spring constant, the mass, and the forcing frequency. @is the coefficient of
restitution of the impacts and p is related to the amplitude of external forcing,.
This simplified map captures the dynamics near the grazing condition and
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Figure 2.3: Phase space trajectories of the simple impact oscillator. The
grazing trajectory divides the phase space into two dynamically distinct re-
gions.

shows a direct transition from periodic to chaotic dynamics when the phase-
space trajectory grazes the wall in the corresponding continuous-time system
(see Fig. 2.2) [219, 220]. Similar phenomena are observed if the system has

no damping. We explore the behavior of this system in the quantum domain.
The simple impact oscillator (without forcing and damping) is modeled
as a point mass moving in the potential

ee? fr<z
Vv ={2 w 2.1
() { oo ifx>xy, &)

where z is the position of the mass (x = 0 corresponds to the unstretched
position of the spring), and z,, is the position of the wall.

The equation of motion for the mass is given by a pair of coupled first
order differential equations

. . k
t=v, V=-—z (2.2)
Each phase space trajectory of the impact oscillator is a periodic orbit
(Figure 2.3) with a unique energy. The orbit which just grazes the wall is
special as it divides the phase space into two dynamically distinct regions.
Orbits with energy less than the grazing orbit never touch the wall and have
the same time-period as the grazing orbit, while orbits with higher energy
impact the wall and have progressively shorter periods.
This classical system is decidedly not chaotic. But there is stretching in
the phase space , i.e., nearby initial conditions move away from each other
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Figure 2.4: Frames from the evolution of a normally distributed ensemble of
initial conditions in a classical impact oscillator. The initial conditions are
taken as distributed such that the mean system satisfies the grazing condition

<IC(O)> = T Ty.

along the trajectories. This can be appreciated from the evolution of an
normally distributed ensemble of initial conditions (Fig. 2.4). Over time,
continuous stretching spreads the part of the ensemble impacting the wall
into an increasingly fine spiral. We shall explore the dynamics of the quantum

analog of this system in the following section.

2.3 The quantum impact oscillator

We construct a quantum analog of the simple impact oscillator by using the
same potential as equation (2.1) to give the Hamiltonian

H= s+ V(z) (2.3)

with domain
¢ Sy ¢|¢,H¢€£2(—'OO,.T1U],
20 = { S N v =0
A minimum uncertainty Gaussian wavepacket serves as the initial state,

with its mean at z, (Figure 2.5):

Y(z,t = 0) = \4/27;\/% exp{— (’32_0010) } (2.4)

Closed-form solutions for the quantum impact oscillator exist only for

Zy = 0. Hence, the time evolution was computed numerically.
The position coordinate was discretized into 10,000 steps in the range
between —60 and z,,. Eigenvalues E, and eigenvectors |¢n) of the system
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\ o(z)

To 0 Ty

Figure 2.5: Potential function V'(z) and the initial wavefunction P(z,0).

were computed by employing the Numerov-Cooley scheme [221-223]. The
results were verified by directly diagonalizing the Hamiltonian matrix [223].
The initial wavefunction ¥(z,0) could then be expressed in the energy basis,
and its time-evolution written down as a sum of its components along the
evolving energy eigenvectors.

Y(,t) =D (@alto(x,0)) e |gn) 5@?

n

The above infinite series was truncated at n = 40 as the contribution
from higher eigenvectors is well below machine precision (Fig. 2.6).
We have also calculated the evolution of the wavefunction using the time-

evolution operator
~ —1Ht %

and have checked that both the methods give the same result. The pa-
rameters were taken as k = 1, m = 1. We have used natural units with
— 1. The initial Gaussian wavepacket has its mean at x = —5, hence the
wall position, x,, = 5 corresponds to the grazing condition for the classical
oscillator.
The Wigner distribution

Weep) == [ v+ v ) ntay (23)

is the quantum analog for the probability distribution over the classical phase
space. Comparison of the evolution of the Wigner quasi-probability distribu-
tion for the quantum system and the evolution of a ball of initial conditions
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eigenvalue number, n

Figure 2.6: The components of the initial wavefunction (1) along the dif-
ferent eigenvectors (¢,), given as ¢, = (@nltho). It shows that components
beyond n = 40 have negligible contribution.

in the classical system provides valuable information about the difference
between the two systems. The occurrence of negative values in the quasi-
probability distribution indicates a departure from classical behavior. It can
be seen that definite patterns emerge in the Wigner distribution (Fig. 2.7)
which evolve aperiodically. This phenomenon becomes more pronounced in
the vicinity of the grazing condition.

In order to investigate the dynamical features, we need to obtain a real-
valued time-series out of the complex valued wavefunction distributed in
space. We employ the entropy of the probability density [224] at time ¢:

SO == [ 1wtz 1og((t, ) do (2.6)

This time-series captures the nature of dynamics—it is a periodic func-
tion for a periodic evolution of the wavefunction and aperiodic otherwise.
We chose entropy as the dynamical variable after trying out possible alter-
natives like autocorrelation, Haussdorff distance, L,-norm for different n,
and expectation values of position and momentum. Some of the measures,
for instance the autocorrelation and Haussdorff distance, etc. [225] compare
the wavefunction at the current instant to an earlier instant, becoming de-
pendent on the choice of the initial wavefunction. On the other hand, the
fluctuations in the expectation values of position and momentum die down
to very small values as a result of the Wigner function spreading out over
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Figure 2.7: A snapshot of the evolving Wigner distribution for the grazing
condition at ¢ = 100.

the accessible phase space, rendering them inappropriate for characterizing
the dynamics. We found that the real valued time-series of the entropy and
L,-norm capture the motion of the wavepacket indefinitely without requiring
comparison with its past history.

When the wall is far away (see Fig. 2.8), we find that the entropy time-
series is periodic. As the wall is moved closer, the dynamics becomes aperi-
odic. This is even more apparent from the frequency spectrum. It shows a
collection of isolated peaks which greatly increase in number near the grazing
condition. This is in stark contrast to the classical impact oscillator, which
is always periodic.

We used the 0-1 test to ascertain whether the aperiodicity is due to dy-
namical chaos.  The 0-1 test is a procedure [68] to distinguish between
chaotic and non-chaotic time-series. It returns a value of 0 for periodic or
quasi-periodic time-series and a value of 1 for chaotic time-series. It is known
that for strange nonchaotic dynamics, the 0-1 test returns a value between
zero and one [76, 77]. More details about the test are provided in Chapter 1.

We obtained values close to zero for all positions of the wall. This indi-
cates an absence of chaos in the time-series. Sensitivity to change in initial
condition is also checked by taking two close initial wavefunctions (two Gaus-
sian functions with the same standard deviation, but slightly different means)
and calculating their time-series. The trajectories do not diverge from each
other. This agrees with our theoretical expectation that a closed quantum
system cannot have sensitive dependence on initial conditions.

Is it then strange non-chaotic dynamics? Since the system is conservative,
there cannot be any attractor. The 0-1 test was modified to robustly
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Figure 2.8: Left: entropy of the probability density [y (t)|? versus time for
different wall positions. Right: frequency spectrum of the entropy time series.

\A/ \\u,\' differentiate between quasiperiodic, strange-nonchaotic and chaotic dynamics
by (a) the addition of a small noise term [76], and (b) by restricting the
o suitable irrational numbers, particularly ¢ = (27)?/w where
[77]. (We used the second algorithm hnd obtained a value
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Figure 2.9: Energy spectrum for different wall positions. Except for the
conditions x,, = 0 and z,, = oo, the other energy levels grow nonlinearly
with quantum number n. A typical example, z,, = 5, is highlighted.
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Figure 2.10: (a) Probability distribution of consecutive level spacings for
different wall positions is plotted on a semi-log graph. Two prominent peaks
at AE = 1 and 2 correspond to the harmonic and half-harmonic limits. The
peak at AE = 1 decays and then grows exponentially to the peak at AE = 2.
(b) Normalized level spacing distribution for the same wall positions.

due to quasiperiodicity.

According to the Bohigas-Giannoni-Schmit conjecture [105], the statis-
tical properties of the energy levels of a quantum system hold important
information about the type of dynamics it undergoes. The energy levels of
the quantum impact oscillator for different wall positions, computed using
the Numerov-Cooley algorithm, is plotted in Fig. 2.9. The levels for one par-
ticular wall value (x,, = 5) has been highlighted to make it easy to notice its
salient features. Analytical results for the cases z,, = 0 (half-harmonic oscil-
lator) and z,, = oo (harmonic oscillator) are known. In the limit of large wall
position, the lower energy levels approach the harmonic oscillator’s energy

X \A( mﬂn + %), as their corresponding eigenfunctions are sufficiently
'S far away from The wall to feel its presence. For large energy values, the energy
levels asymptotically approach a straight line. These asymptotic limits are
connected by a smooth bend. Accordingly in the level spacing distribution,
\/Vf'\; w‘u( we anticipate two peaks corresponding to the slope of these two asymptotic
ij; s \ limits (see Fig. 2.10(a)).

w - ‘“‘ ) The numerical result belies the fact that there is a maximum in the dis-
%o i+ 1S tribution at AE = 2 for all wall positions. The numerical result shows the
w’\' peaks at values less than 2 which is an artefact caused by the limitation of
considering a finite number of energy levels. Dean [226] has derived a series

QaU\Lb &35 solution for the energy levels of this system:

-

Ei(zy) = —% + ag(i) + a1(1)Ty + ax(i)a2 + - - - 2.7

? {)a{j(b 73
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\ & Figure 2.11: Bifurcation diagram of the classical forced impact oscillator as
a function of wall position. Color indicates the Lyapunov exponent.
with
ao(n) = —(2n+1) (n= 0,1,2,--~)/
2
0) = —4/—
a1(0) = i
2n+3
0,1(77.+1) = (m) al(n) | ﬁ
2
az(0) = —;(1 —In2) [
2n + 3’ 2n + 3)!(2n + 2)!
az(n+1) = 2(n) ( ) (4 ) ’
2n+2 167[(n + 1)!]4(n + 1)24» )
and so on, which can be seen to limit to AE = 2 as n approaches oo.
It is customary to plot the distribution against the normalized level spac-
ings, s = AE/(AE) (Fig. 2.10(b)). The level spacing distribution of most
‘ & g
\OV'\/ -\/\\_,.,’(S integrable systems is believed to be the Poisson distribution as conjectured
m Yv by Berry and Tabor in [106], while classically chaotic systems are conjec-
as% \o \ tured to follow Wigner-Dyson statistics. The level spacin distribution of
| \D S5 oms the quantum impact oscillator is found to not satisfy this conjecture.
Fﬁ( 5 twbe\@ l\
avdum. WOV'S 2.4 The Forced Impact Oscillator

(3
L \3(0 ) ';S\'/f 8 < The forced impact oscillator, in addition to the mass-spring-wall arrange-
m &Q;WBVN ment, has a periodic forcing acting on the mass. The classical equation of
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motion for this system can be expressed as two coupled first order differential
equations

fey, " = —;’;—x + () (2.8)

In this work we confine ourselves to the case of sinusoidal forcing of the form:
f(t) = Afsinwyt ).¢

The bifurcation diagram (Fig. 2.11) for the system shows that the addi-
tion of forcing makes the system chaotic in certain ranges of the wall position.
It also shows the sudden appearance of a large amplitude orbit at the grazing
condition (x,, = 5). There are windows of chaos, quasiperiodicity and peri-
odicity for different wall positions. The Poincaré section (Fig. 2.12) obtained
for wall position x,, = 3 shows a mixed phase space with chaotic and regular
region in a complicated manner.
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Figure 2.12: Poincaré section of the classical forced impact oscillator for Ay =

20, wy = ‘/52“, k=1, m =1 and the wall position is 5. The colors indicate
the finite-time Lyapunov exponent of the trajectory near the corresponding

point.

2.5 Quantum Forced Impact Oscillator

The quantum forced impact oscillator is constructed by adding a forcing term

to the potential
V(z,t) = Vo + Ay sin(wyt), &
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where V15 is the static potential of the impact oscillator, given by (2.1). The
Initial state is taken to be a coherent-width Gaussian wavepacket with mean
at r = 0 and variance hm. The natural frequency of the harmonic oscillator
without the wall is 1, and the forcing frequency is taken as an irrational
number, the golden ratio —‘/% The system is numerically simulated by
first representing the initial wavefunction in the energy basis of the static
Hamiltonian, and then evolving it using adaptive timestep 4th order Runge-
Kutta method [227]. The entropy time-series is used as a probe for the
nature of dynamics.

I
\sansassansascas/ RN 0 EE
é -’WWW\F HS Jéx Lﬁnﬂnn e <c“
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Figure 2.13: Left: Time-series of the entropy of the probability distribution.
Right: Fourier transforms of the entropy time-series for different positions of
the wall.

The entropy plots of the system for different wall positions are shown in
the left side of Fig. 2.13. The frequency spectra are plotted to the right. For
wall position z = 0, the entropy plot is periodic and its Fourier transform
shows the forcing frequency and its harmonics.

For wall positions where the wavefunction interacts with the wall, we
see aperiodic dynamics. The Fourier transform plots show a large number
of peaks. As the wavefunction is an extended entity in space, the grazing
condition cannot be defined as in the classical case. To find the grazing
condition, we remove the wall and observe the dynamics of the coherent state
in the (now) harmonic potential subjected to the same sinusoidal driving. We
allow the time evolution to reach a steady state of oscillation. The conditions
for which the peak of the coherent state just reaches the position where the
wall used to be, is taken to be the grazing condition for the quantum impact
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oscillator. For z,, = 5 and wy = 1—+2ﬁ we find the condition for grazing is
Ay = 0.015. Remarkably, we see a very large number of discrete frequency
components at the grazing condition. In all cases, we see the presence of
two peaks at the natural and forcing frequencies. The situation with the
wall moved to infinity is not presented in the figure as the entropy remains
constant.

£ (a) A;=0.1 (b) Aj=1.2

5 1 i e POISSON 1 « o Poisson

= A GUE 1 GUE

:-3 0.5 Aif’g 0.5 } ™~ 0.5
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3 normalized level spacing, s

[

Figure 2.14: Level spacing distribution of the Floquet quasi-energy spectrum o ¢ N
for the forced impact oscillator with wall position z,, = 5, forcing frequency ﬂ'?‘ Kwyb\)
wg =1+ § , with forcing amplitudes (a) A; = 0.1, (b) Ay = 1.2, and (c) G\

Ay = 4. The distribution transitions from Poission to GUE as the forcing
amplitude is increased.

The normalized level spacing distribution of the Floquet quasi-energy ‘\now wal

spectrum for the forced impact oscillator is shown in Fig. 2.14. The distri- \,4/\)&'} ora® ¢
bution can be seen to follow the Poisson distribution when the amplitude of W5T®5 7\ ¥
forcing is small (Ay = 0.1) as is predicted by the conjecture of Berry and < pLisivg Yok t
Tabor in [106]. With increase in the forcing amplitude, the distribution tran- Ehl &E Yol

sitions smoothly into a Gaussian Unitary Ensemble (GUE) in accordance to
the BGS conjecture [105] regarding the level-spacing distributions of inte-
grable and chaotic systems respectively. a_\‘m—agoé oY c’“f &\Q’l \w WS G
A bifurcation diagram for the o uantum pr%l{)'a‘lb\ﬁft’y d\énsity at A - ).O S Q
different wall positions is plotted in Figr2715. When the wall is far away, the ¥
wavefunction cannot interact with the wall and undergoes periodic motion
in the harmonic well at the forcing frequency. As the wall is moved closer,
the wavefunction gets partially reflected at the wall and interferes with itself
resulting in large amplitude banded patterns. This pattern occurs over a
range around the point of grazing (z,, = 5). This is reminiscent of the large
amplitude chaotic orbit appearing at the grazing condition for the classical
system (Fig. 2.11).
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Figure 2.15: The quantum bifurcation diagram for the forced impacting sys-
tem.
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Figure 2.16: Two consecutive zooms of the frequency plot corresponding to
Fig. 2.13, the case of z,, = 5.

Signatures of strange non-chaotic behavior

The increase in the number of frequency components for a range of parameter
values (Fig. 2.13) alerted us of the possibility of strange non-chaotic behavior.
We use three diagnostic tests to check the character of the time-series that
we obtained for the grazing condition.

Bezhaeva and Oseledets [228] showed that a dense set of discrete peaks
occurs in the Fourier spectrum of the time-series obtained from a strange
orbit. Two consecutive zooms of the frequency plot of the quantum impact
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oscillator for the grazing condition is shown in Fig. 2.16. It indicates a dense
set of frequency peaks with a fractal character. Such fractal quasienergy
spectrum have been observed in previous studies in quantum chaos (206,
229-231].

It is also known that the Fourier spectrum of the time-series of a strange
orbit has a certain characteristic scaling behavior [63, 79]. The spectral
distribution function, i.e., the number of peaks with amplitude larger than
a threshold plotted against the threshold (see Fig. 2.17), has a power-law
relationship in the case of strange attractors.

The spectral distribution function for the entropy time-series of the clas-
sical impact oscillator is plotted in a log-log scale in Fig. 2.18(a). It shows
power law characteristics (N (o) = 515200~ %%7), indicating the strange char-
acter of underlying the phase space flow. The spectral distribution function
of the quantum system plotted in a log-log scale (Fig. 2.18(b)) exhibits power-
law character with two characteristic scaling exponents

N(o)= 959305742 for o € [2,3.67] %
N(o)= 3422.1078%8 for o € (3.67,7.7],
implying a strange character of the dynamics.

It is known that, even though the largest Lyapunov exponent for a strange
nonchaotic orbit is negative, the dynamics can be locally unstable [79]. This
is captured by the stationary density of finite-time Lyapunov exponents [232.
233]. The presence of positive values in this distribution indicates that the
dynamics is locally unstable [62, 63].

The stationary density of finite-time Lyapunov exponents for the quan-
tum impact oscillator at the grazing condition is shown in Fig. 2.19. The

10°
peaks above threshold

threshold

1 0()

Fourier amplitude

0 1
frequency

[

Figure 2.17: An illustration of the spectral distribution function. It counts
the number of frequency components greater than a threshold.
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Figure 2.18: Spectral distribution function, i.e., the number of peaks above
threshold o versus the threshold (a) for the classical system at the grazing
condition, plotted in log-log scale, (b) for the forced quantum impact oscil-
lator entropy time-series in log-log scale.

presence of positive values in this distribution indicates the occurrence of
strange nonchaotic dynamics.
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Figure 2.19: Distribution of finite-time Lyapunov exponents of the entropy
time-series. Presence of positive parts indicates fractal structure of the un-
derlying dynamics.

In order to be doubly certain, we used the L;-norm of the wavefunction
as another dynamical variable

il = [ " ot 2) de (2.9)

(o]

which also yields a positive real number. The findings from the L;-norm
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time-series are similar to those from the entropy time-series

Measure 0-1 test(K) Modified 0-1 test (K)
Entropy 0.86 0.45
Li-norm 0.69 0.69

Table 2.1: Results of 0-1 test and modified 0-1 test for the entropy and L;-
norm time-series at the grazing condition.

Table 2.1 shows the results of the 0-1 test for chaos and modified 0-1 test
(as described in [77]) when applied to the entropy and L;-norm times series.
It has been reported in [77, 234] that intermediate values between 0 and 1
indicate the presence of strange nonchaotic dynamics.

2.6 Conclusions

e
In this chapter we have explored the quantum dynamics of a classically 8 Suw[\oo.h'r S
chaotic system, the impact oscillator. The classical system transitions into a
chaotic behavior when the mass just grazes the wall. In the quantum analog, c/wa He
the wavefunction interacts with the wall even before the classical grazing ) v
condition and the wavefunction is found to evolve aperiodically over a range K é '7’0 i

of the position of the wall. _\/L\e %f(_e
The diagnostic tests performed on the entropy time-series extracted from

the evolution of the wavefunction show that for the unforced quantum impact ‘M*() \ec lof ;

oscillator the dynamics is quasiperiodic, while that of the classical system oSC \l

is periodic. The level spacing distribution follows neither Poisson nor the
Wigner-Dyson distribution.

For the forced quantum impact oscillator, the dynamics has all the char-
acteristic features of a strange nonchaotic orbit. The frequency spectrum
is discrete but dense. The distribution of finite-time Lyapunov exponents
has positive components while the long-term Lyapunov exponent is nega-
tive. Two forms of the 0-1 test yield values between 0 and 1. The spectral
distribution function has a power-law character with two different exponents
for different ranges of threshold. This establishes that the behavior is strange
but not chaotic.

The quasi-energy level spacings are found to transition from Poisson dis-
tribution to GUE, as the fraction of the classical phase space populated by
chaotic orbits increases. This is in accordance to the conjectures of Berry-
Tabor and Bohigas-Giannoni-Schmit.

We have repeated our analysis on quantum analogs of different forced os-
cillators: the forced pendulum, undamped Duffing oscillator and the Kapitza
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pendulum. We report that none of these systems show signs of strange non-
chaotic dynamics. In that sense our observations in the forced impact oscil-
lator are atypical.

To our knowledge this work provides the first numerical evidence for
strange nonchaotic dynamics in a quantum system. The existence of this
novel dynamics could have important applications in quantum information
and related technologies. Rigorous justification for the existence of this form
of dynamics in quantum systems is still an open problem.

82



Chapter 3

Limiting distribution of
periodic position measurements
of a quantum harmonic
oscillator

3.1 Introduction

Quantum theory is perfectly deterministic except when a measurement is
made. The outcomes of measurements in quantum mechanics are proba-
bilistic. The probabilities are given by Born’s rule, which states that the
square of the modulus of the wavefunction is the probability density of the
measurement outcome. If we take an ensemble of identically prepared quan-
tum systems, the distribution of measurement outcomes would follow Born’s
rule. We ask a different question: What is the distribution of measurement
outcomes when the same quantum system is periodically measured?

Our aim in this chapter is to characterize the statistical distribution of a
sequence of position measurements of a quantum system. We consider a par-
ticle in harmonic oscillator potential, whose position is periodically measured
with an instrument of finite precision. We choose the quantum harmonic os-
cillator because it approximates the neighbourhood of the minima of any
smooth potential well.

We show that the distribution of the measured positions tends to a lim-
iting distribution when the number of measurements tends to infinity. We
derive the expression for the limiting position distribution and validate it
with numerical simulation.
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Figure 3.1: Evolution of the probability density function with periodic mea-
surement

3.2 Problem Statement
A particle is placed in a harmonic oscillator potential

1
V= 5mw2x2. (3.1)

The particle is initially in a state ¥(z,0) and we subject it to periodic mea-
surements at intervals of time ¢,. When a position measurement is made,

“'L( “? the wavefunction is supposed to collapse to a a_function, whose position
o e W‘kmuld be a random number following the probability distribution given by

g e Le  the wavefunction just before the collapse. Subsequently, the wavefunction

(3
Wo s \‘*: e would evolve following the Schrédinger equation until the next observation.
WC\S\O In order for the above scheme to work in numerical simulation, we need
Q the wavefunction to be smooth. So we consider the state immediately after

a collapse to be a narrow Gaussian function centered at z,, with standard
deviation o,,,

\a@'\(\'ﬁ( &—\\Q\A I'S ‘75 \I/(:L', t.u) measurement Q(:c el O'M). (32)
w bo&v‘e 1 1 . o .
Q,\\ L In fact, it is supposed to collapse to a wavefunction which is a product

of the wavefunction before measurement and the Gaussian function repre-
senting the measurement process. However, if the measurement process is
cct O\ represented by a Gaussian function that is narrow enough compared to the
spread of the particle wavefunction, the post-collapse wavefunction can be
aptly represented by the narrow Gaussian alone.

84



3.3. NUMERICAL SIMULATION
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Figure 3.2: (a) Histogram of 5 x 10° measurements for m = 1, w =

0.707, o, = 0.5, t,, = % = g—:, (b) Convergence of the standard deviation,
which tends to g

3.3 Numerical Simulation

The system was simulated by evolving the wavefunction for ¢,, seconds and
drawing a random sample z,, every t, seconds from the probability den-
sity |¥(z)|? just before measurement. Just after the measurement it was
replaced by a narrow Gaussian of standard deviation o,, and centered at x,,.
The state was then allowed to evolve until the next measurement following
the Schrodinger equation (Fig. 3.1). The process was repeated to obtain
the limiting distribution of samples, which we plot in Fig. 3.2(a). Numerical
simulations for various values of t,, and o,, revealed that the limiting distribu-
tion is always Gaussian. The standard deviation of the samples was found to
rapidly converge to a constant value as the number of samples was increased
(Fig. 3.2(b)). This observation of convergence to a Gaussian distribution
motivated our analytical approach, which is presented in section 3.5.

In order to check the dependence of the limiting standard deviation (o)
on the accuracy of the measuring device, we obtained the results for different
values of o,,. The results are presented in Fig. 3.3(a). Similarly, we explore .~
the dependence of the limiting standard deviation on the natural frequency
of the harmonic oscillator, which we plot in Fig. 3.3(b). We also found that
the limit distribution is independent of the initial wavefunction.

"The assumption of perfectly periodic measurements cannot be realized in
practice. Hence, we numerically investigated the effect of a Gaussian noise
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CHAPTER 3. DISTRIBUTION OF POSITION MEASUREMENTS IN A QHO
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Figure 3.3: Limiting standard deviation versus (a) the standard deviation
of collapsed wavefunction, and (b) the natural frequency of the harmonic
oscillator.

added to the time period of measurement. We found that the additional
noise has a negligible effect on the limiting standard deviation. This implies
that the analytical results presented below, which are derived based on the
assumption of periodic measurements, also hold for approximately periodic
measurements.

Note that our measurement scheme can be described in the language of
positive operator-valued measures (POVMs), which is shown in the following
section. Hence, the scheme is, in principle, realizable.

3.4 A POVM reformulation of our measure-
ment scheme

We shall demonstrate that our scheme can be realized as a generalized mea-

surement (POVM). In particular, we show that our scheme can be refor-

mulated as a weak position measurement, which is a subclass of generalized

measurements [235].
The measurement scheme used in this chapter (3.2) is .! %

U(z,t,) it Y Gz — HJM,UM)(

which, we shall show, is a special case of the weak measurement protocol
used in [193, 196]

el e 2
\I/(”L') measurement, %exp{ (3,202Iw) } ‘Il(l'), ﬁ;
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3.5. DERIVATION OF LIMIT DISTRIBUTION

where ¢, is a measure of the imprecision of the instrument and z,, denotes
the position registered by the instrument.@nsures normalization of the

post-measurement state. ¢ a\\
i wv &« —

Equating the post-measurement states of both these schemes,

Gz — 2.,0.) = % exp{Z(x—;';—wy} U(z) ‘_B//

Since the states used in this chapter are Gaussian wave packets, ¥(z) can be

written as G(z — iy, 0y), which gives })'4' 6 pos ihen aj€
: & L ?M/Le’( pec")
G(z —,,0,) = — G(x — 2,,0,) Gz — py,0y) , § Xy dev ¢
N Tq S ° _Le¥
Using results about the product of two Gaussians [236], we write V/ oo Q
. 020l . W03+ fly0 N X
02402 ) - o2 + 0}
Rearranging terms, o6\ M
N
Vot T,02% — pyo? ﬁ' cLa 3
ot = T, = ——% - £, aw
v ai — o2 ) v o2 — g2 Tu ™ M

Hence, our measurement scheme is equivalent to a weak measurement
with the above parameters.

3.5 Derivation of Limit Distribution

We now obtain the expression for the limiting distribution and its dependence
on various parameters.

The evolution of a Gaussian wave packet in a harmonic potential is a well
known result [237-239]. Let the initial wave packet be

U(z,0) = \/2—7;\/0_[ p{/(~ @4—_0__31::)2/},}/ (3.3)

where zg is the initial center of the Gaussian wave packet, o4 is the initial
width of wave packet. Then the probability density at time ¢ is given by

10z, 1) = (t) { (x";;zijswt)?}, (3.4)
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CHAPTER 3. DISTRIBUTION OF POSITION MEASUREMENTS IN A QHO

where

023 00 b 0z0 .
o(t)=—232—,14 (——> +1+ (4 (——) — 1 cos 2wt (3.5)
2v/2 049 Ogs Ogs

and 045 = \/h/mw is the width of the ground-state eigenfunction.

For the sake of succinctness, we shall refer to a Gaussian in z centered at
1 with standard deviation o as G (z — y, ), whereby the time evolution of a
Gaussian wavepacket can be expressed as

G (x — 20,020) — G (x — zocoswt,a(t)) o (3.6)

At t = 0 we start with a Gaussian wavepacket (3.3) centered at z = 0,
and width 0,9. We repeatedly measure the position of the particle after fixed
time intervals of ¢,,. At each measurement a random value of the position is
chosen following the distribution of [¥|? at that time instant.

A measurement collapses the wavefunction. The imprecise instrument is
assumed to collapse the wavefunction into a narrow Gaussian wavepacket

Wi(z0) = 72_;—@63@{/{/_ (x%‘xgwy}} / j:t

where z,, is the outcome of the i*" measurement. The next measurement
happens after a time ¢,.. The probability density for the wavefunction just
before the next measurement can be calculated using equation (3.4):

A L= S

=G (z — .4 coswt,,, o(t.)),

For the first measurement the distribution is

Di(z) = |¥(x,t.,)|*

- ool { - g} ;-3

=G (z,00(t.))

We denote the standard deviation of this distribution as oo(t.) to dis-
tinguish it from all subsequent standard deviations. The densities before all
subsequent measurements have the same width as they all start from a col-
lapsed state whose standard deviation is identical in all cases. The expected

distribution for the second measurement is
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3.5. DERIVATION OF LIMIT DISTRIBUTION

Do) = [ Duloun) (o, t) Pz
_ /_ : G (51, 00(6.)) G (% — Tan cOSwhay o(£,)) AT o
oty s
el .
- [~ Tyl e e
(201 — wSeCWE,)? }} B

1
V27 (o(t,,) secwt,,) exp{,{/— 2(o(t.) secwt.,)?

:/ sec wt, .G (le,a?tM)) G (x.q1 — Tsecwt,, o(t,)secwt,,)dT. o
- 0,wst |

Using the following result about the integral of the product of two Gaussians

/ G (x — pm,01) G(x — p2,02)dz = g(#l"ﬂzy\/‘f%"‘ag)) 'k\;

we have

D, (z) = secwt, .G (:c secwt,,, v/ oo(t.)? + o(t,)? sec? th)

se wt e z2 sec? wt
¢ Xp{/{ 2{U(tM)zseC2WtM+¢70(tM}

V2my/o(t.)? sec? wt,, + oo(t.)?

exp{{— 2{a(tM)2+aog(Ct2M) cos? wia}? }/}

\/ﬂ\/a 2 + go(tu)? cos? wt,,
=g (:n a(t, )\/1 + (?((tt:))> cos? th)‘
r()@‘) ( | ‘t (L“))\Cosq()-)(’u>

Similarly, for the third measurement, the density is T ( ‘.M)
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Dg(.’[!) = / DQ(Q?Mz) IlI/Q(.’E,tM)P d.’L‘MQ ﬂ
2
=G|z, a(tM)\/l + cos? wt,, + (UO(tM)) cos? wt,, \/

b m £
And for the n'* measurement the density is ‘* % \ X (0% (u)

T oo(t))? ,
Dy(x) =G | z,0(t)1/1 + cos2wt,, + --- + <00(—15M)) cos2(n=1) it ¥
\ M

5[‘9\0"\\' outlewor

The geometric series converges if cos? wt, <1 , So

Dle)=0 (:r, o(t.)V'1 + coswt,, + .. )

(s ott) |
=i <x’lsin th|> 5
| a(t)

o e = sinwt,, | e B

The distribution of position measurements is then the distribution of
samples, one taken from each D;. This is the mean of the densities D;. So
we have

0, = () o alf Peostuwt, ol s oo(t.)? cos?E D e, (3.9)

The mean of all these densities is again a Gaussian with mean at zero and
variance s2 given by the mean of the individual variances given by equation

(3.9 2
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8!\.’)

= lim — E 0
n—)oo'rL

1
= lim %oo(tM)2
n—0o0

1
-|-—T; {or(tM)2 + oo(t,u)zcoszth}
it .
+={o(t.)? + cos’wt, + -+ + oo(ty)? cos? D wt, }
n l

B
= lim[ M{1+c052th+cos4th+...}
n
+

t 2
o(ts) [n4 (n—1)cos®wt, + ...
n

+ (n—(—1)cos?Vwt, +... ]

2 2 t 2/ 22
OO(tM) COSEC™ Wl i U(t,w) Z[n o (k o 1)](COS2 th)(k—l).

k=1

= lim

n—00 n n

If cos®?wt,, < 1 the second term is a convergent arithmetico-geometric
series and we have

. s oo(t,.)?cosec®wt,, 2 o(t.)? n cos? wt,,
G = -
= n—00 n n 1—cos?wt, (1 — cos?wt,)?
.2 { a(t,) }2
§ S5y = o
sin wt,,
o(t,)
: = |—|= 3.10
e sin wt,, 00 o ( )

We find that s is the same as 0.,. This means that the distribution of
measurement outcomes T, T2, - - -, L.y itself converges to Dy, as n — oo.
Substituting equation (3.5) in equatlon (23 10) we get

T
g\d(’p"\ 00\/4@+1+ 1)cos2th 1&;

e o
q\u*@hbv\' % - 2v2 o, smwt
"

T T &

%QV\‘\b‘—
o}
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A
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\a:‘“ \Jt}'\\le Figure 3.4: Comparison between the numerical and analytically derived re-

¥ E L W sults for (a) limiting standard deviation (0x) versus the standard deviation

Xof< . of collapsed wavefunction (o), and (b) limiting standard deviation (00)
versus the natural frequency of the harmonic oscillator (w).

In Fig. 3.4 the analytical result given by equation (3.10) is plotted with
continuous lines while the numerical results are plotted with dots. In both
these cases the theoretical results and simulation show good agreement.

3.6 Analysis

We found the limit distribution to be a Gaussian centered at zero with stan-
dard deviation given by equation (3.10) which can be simplified to

X wb Ty}
aja.\“\ B %__ \Jf,_ — B == \/Uﬁ cot? wt,, +%J _kh
Ts ’/ng T Vmw 4

We obtain a non-dimensional form by dividing throughout by oy,

o, o t 1 /o9 2
. (0_0) CcO 7TT+4<UM>

1
or, ¢~ = \/cﬁ cot® 2T,

4¢2

M

where ¢* = %, Cu = %ﬁ‘ and 7, = @./‘;}hese substitutions are advantageous
because they are dimensionless quantities independent of the length and time-
scales of any particular harmonic oscillator.
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3.7. CONCLUSION

Figure 3.5: Plots of ¢~ vs (a) ¢, and (b) 7. Color online.

In Fig. 3.5(a) we see how ¢~ changes when we vary ,,, for particular

values of 7,,. For g, — 0, ¢* grows hyperbolically (~ t) It has a minimum

value at ¢, = ,/“‘—“%ﬁ“. And as ¢, — 00, it grows linearly in ¢, with slope

|cot 277,,|. For 7, € [0, i] the slope of the linear asymptote varies from oo
to 0. After 7, = i, the process reverses itself till 7., = %, after which the
pattern repeats periodically.

In Fig. 3.5(b) we see how ¢~ changes with 7. The plots are periodic in
7., with period % The curves have minima at 5 — i, n € N. As ¢, increases
¢~ gets steeper and the minima tend to zero.

In Fig. 3.6 the dependence of ¢* on both 7,, and ¢, have been consolidated
into a single surface plot.

3.7 Conclusion

In this chapter, we have investigated the statistical distribution of periodic
measurements on a single quantum system (in this case a quantum harmonic
oscillator). We find that the measurement outcomes follow a Gaussian dis-
tribution with mean zero.

An analytical expression for the standard deviation of the limiting dis-
tribution was derived and was validated with numerical simulation. The
standard deviation of this distribution was found to depend on the accuracy
and frequency of measurements, and the natural frequency of the harmonic
oscillator. This distribution was found to be independent of the initial wave-
function.

We have shown that there is an optimal accuracy of measurement that
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CHAPTER 3. DISTRIBUTION OF POSITION MEASUREMENTS IN A QHO

1
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Cu k 0.5

Figure 3.6: Plot of ¢~ vs ¢, and T,

Tm

minimizes the standard deviation of the limit distribution. We also found
that certain measurement intervals minimize the standard deviation of the
limit distribution. The analytical results were numerically found to be robust
to the presence of Gaussian noise in the time interval. These results may be
useful for localizing a particle at the center of a well with the least uncertainty.
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Chapter 4

Objective collapse due to a
macroscopic object

4.1 Introduction

What exactly qualifies some physical systems to
play the role of ‘measurer’? Was the wavefunc-
tion of the world waiting to jump for thousands of
millions of years until a single-celled living crea-
ture appeared? Or did it have to wait a little
longer, for some better qualified system ... with
a PhD? If the theory is to apply to anything but
highly idealised laboratory operations, are we not
obliged to admit that more or less ‘measurement-
like’ processes are going on more or less all the
time, more or less everywhere? Do we not have
jumping then all the time?

JOHN BELL
Against ‘measurement’ [108]

The collapse of the wavefunction is arguably the least understood process in
quantum mechanics. The Copenhagen interpretation said that the process
of measurement leads to an abrupt change in the wavefunction whereby it
collapses into an eigenstate of the measured observable. Which physical pro-
cesses constitute a measurement was left to the discretion of the practicing
physicist. It is as if reality is brought to existence by the act of measure-
ment. To resolve this unsatisfactory state of affairs, a plethora of ideas—
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CHAPTER 4. OBJECTIVE COLLAPSE DUE TO A MACROSCOPIC OBJECT

macro-micro divide, many worlds, and even consciousness—have been put
forth. Contrary to the standard Copenhagen interpretation, objective col-
lapse models modify the Schrédinger equation with nonlinear and stochastic
terms in order to remove the act of conscious observation from the collapse
process.

In this chapter we consider a macro-micro divide in a model system—the
quantum version of a soft-impact oscillator—in which the possibility of inter-
action between a microscopic_and a macroscopic object naturally arises. We

¢ a collapse model([130] jn which macroscopic objects in the vicinity
of a particle may stochastically collapse the wavefunction, without any in-
tervention of a conscious observer. We investigate four possible conditions of
such interaction-induced collapse and work out the experimentally testable
predictions. We also describe an experiment where these predictions could
possibly be tested.

4.2 The model system

Fig. 4.1 shows the classical analog of the system under consideration—a
simple harmonic oscillator with mass m and spring constant k; which can
impact with a wall, cushioned by a spring of constant k2. The variable z is
measured from the equilibrium position of the mass, and the wall is at Ty
when the spring k, is relaxed.

Figure 4.1: The classical soft-impact oscillator.

The classical system has been investigated in [240-242] with the inclusion
of damping and external forcing, and under the condition of the wall being
of negligible mass. It has been shown that such a system exhibits a sudden
onset of chaos when the mass grazes the wall.

The quantum version of the above system will be a particle in a potential
well, which is the same as the harmonic oscillator potential for z < z,, and
is given by a different parabolic function for z > Zy. The potential function
of the system is given by

12 .2
vioy={ fh sy

Skia? + sha(T — 1,)2, >z 3
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Figure 4.2: Evolution of the probability density distribution of the quantum
particle at four time instants, with ¢; < to < t3 < t4. Dashed line indicates
the equilibrium position of the wall. The potential function, plotted in blue
for the sake of visualization, is not to scale.

A Gaussian wavepacket centered at r = —x,, is allowed to evolve ac-
cording to the Schrodinger equatio etails of numerical simulation yd
parameter choices are given i S@c;-\'—“ca mue [ e

Fig. 4.2 shows snapshots of the dynamics of the probability density for
this system. An animation of the evolution of the probability density function
is given in[supplementary material 1. ?‘? pro A d,e C{-\—aHO W

To investigate the dynamics in the phase space, we compute the Wigner
function

W) =~ [ ¢+l - e P dy (4.2)
mh J_o 7

which gives a time-varying real valued function of the position and momen-
tum. Fig. 4.3 shows the plots of the Wigner function in the z—p phase space
at four different time instants. Prolonged observation of both |¥|* and the
Wigner function shows that the time-evolution of the system is aperiodic.
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Figure 4.3: The evolution of the Wigner function at four time instants. The
dashed line indicates the equilibrium position of the wall. The color denotes
the value of the Wigner function.

4.3 Collapse!

In this section we bring in a new possibility. Since the wall can be consid-
ered to be a macroscopic object, an interaction of the particle with the wall
(classically, an impact) may amount to a position measurement, which will
cause the wavefunction to collapse (Fig. 4.4). Following a collapse, the wave-
function will continue to evolve according to the Schrédinger equation until
the next collapse. Thus, if this possibility is considered, the evolution would
contain unitary evolution as well as non-unitary collapse processes.

Unlike the classical impact oscillator, the impact of the particle with the
wall will be a probabilistic event, guided by the pre-collapse wavefunction of
the particle. However, the present knowledge does not allow us to pinpoint
a unique algorithm with which the instant of collapse and the location of the
collapsed wavefunction can be simulated. So we posit different postulates
regarding the mechanism of collapse, and work out the implications of each.

Postulate 1: If the probability of finding the particle beyond the position
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0.1

(a) (b)

Figure 4.4: (a) Initial Gaussian with mean —5.0 and SD=1, (b) the post-
collapse wavefunction—a narrow Gaussian located at the position of the wall
¢ = 5.0 and SD=0.25. The potential function is shown in blue (not to scale).

of the wall exceeds a fraction 7, i.e., if

/:o W@)Pde > 7, e (0,1) "X:\?

then the wavefunction collapses to the position of the wall. \&U S 02 A’@V\
oW
Postulate 2: The same as Postulate 1, except that the number r is not arte W >
fixed, and is a random number between 0 and 1. This implies that the N Q\,\\)95 A ;
time of collapse is also probabilistic, and the probability depends on cwe (o A
the fraction of the probability distribution that lies beyond the wall. A X -\”O 02\——
Xireh b4
Postulate 3: The same as Postulate 1, except that the wavefunction col- o_c/\/\ =
lapses to a Apoint given by the pre-collapse probability distribution. 09 ¢0 \XU’R

(0¥
Postulate 4: Tﬁe same as Postulate 2, except that the wavefunction col-

lapses to a point given by the pre-collapse probability distribution.
(°¢eOM

Animations of the evolution of the _probability density function for each
of the postulates is given in Epplementary materiali’/ 7 ? 7

4.4 Numerical methods
We numerically solve the time-dependent Schrodinger equation for this sys-
tem using the finite difference method by discretizing the range [—30, 30] of

the position basis into 1,500 segments. We make this choice after checking
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CHAPTER 4. OBJECTIVE COLLAPSE DUE TO A MACROSCOPIC OBJECT

that the wavefunction does not have appreciable magnitude beyond z = +30.
We construct the Hamiltonian matrix using the 8-th order central difference
formula for the kinetic energy operator. The eigenvalues and eigenvectors
of this matrix are computed using standard routines. The initial wavefunc-
tion is then decomposed into its components along the eigenvectors. The
time-evolution is then trivial to compute

Neutoft

() = D e 7 ,) (dalv(0)) (4.3)

n=0

For practical purposes, the infinite series is truncated at a cut-off energy
such that the error is below machine precision. The first 150 eigenfunctions
was found to be sufficient. We start from an initial wavefunction, which is
a Gaussian wave-packet centered at z = —5.0, and standard deviation 1.0.
This initial state corresponds, in the classical picture, to releasing the mass
from the point z = —5.0, which would subsequently graze the wall located
at z = 5.0. The other parameters are taken as m = 1, k; = 1, ky = 10. All
quantities in this thesis are in units where h = 1.

For the first and third collapse postulates, the value of r is taken as 0.5.
The post-collapse wavefunction is supposed to be an eigenfunction of the po-
sition operator, i.e., a delta function. However, the numerical routine would
not work with such discontinuous functions. So we consider the post-collapse
wavefunction to be a narrow Gaussian function of standard deviation 0.25

Fig. 4.4). At the instant of collapse, the wavefunction is replaced with the
collapsed wavefunction at the position dictated by the respective postulate.
This is then decomposed into the energy eigenfunctions and its evolution is
calculated using equation 4.3. The parameter values are taken as: mass of
the quantum particle m = 1, spring constant of the spring attached to the
mass ;= T, the spring constant corresponding to the soft wall k; — 10,
time step 0t =01 We calculate for a total number of 10,000 timesteps. In
the case of the classical ensemble, 10,000 particles are initialized with zero
velicity and positions drawn from a normal distribution with mean —5 and
standard deviation 1. The dynamics is simulated using the classical equations
of motion and integrated using the Runge-Kutta—Fehlberg method.

4.5 Results
Our objective here is to obtain testable predictions of the various possible

mechanisms of evolution of the wavefunction as outlined above. We focus on
two observables: energy and position.

100
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cc~\'/\-/\cW

distribution of energy values

4.5.1 Probabilit

An energy measurement ay return any energy eigenvalue, but the prob-
ability of finding each eigenvalue would be different for various postulated
situations. For the different postulates, the computed probability distribu-
tion of the energy eigenvalues are presented in Fig. 4.5 and the expectation
values of energy are tabulated in Table 4.1. These results are compared to
the predictions of quantum mechanics without collapse and to the situation
in the classical impact oscillator. The classical ensemble considered has the
same initial distribution in position as given by the initial wavefunction for
the other cases.

A \uz)z +wo E‘/ 0.2 ;cm&lla& ]
ot c)!‘lVi QVSl‘\[ oo . e DOStUlate 1] A/M%@
tdpuraat siwee = N\ e ate2. ) af® vol 7
e QQS‘\"CO “NQSG = 0.1 postulaze‘?; 4 0\5“’(0'3@9 [(065@5 i
. e Cawme g = postulate A ( X \‘
o\ W Ahe 20 L. ¥ 20, P B . \/\/\:b\,L & ¢caC
erl o%F cotlepse 5 10 15 20 25 30 oW e
— Eigenvalue number, n 0\, (’ S a
bo W) % {a
Tilpyerer RS Sl
X Figure 4.5: Comparison of probability distributions for energy eigenvalues \I\:\/
for the different cases. &\' :’%w S
Pt s
(
Postulate Expected energy MC,%S 5 \(
No collapse 13.125 GeV
Postulate 1 14.75 GeV
Postulate 2 14.62 GeV
Postulate 3 11.46 GeV
Postulate 4 5.57 GeV
Classical ensemble 13.0005

Table 4.1: Expectation values of energy in the four postulated situations
along with the predictions of quantum mechanics and the classical case.

Note that the expectation value of energy (Table 4. 1) for unitary evolution
of the wavefunction depends on the initial wavefunction considered, and those
for the four collapse postulates depend on the variance of the post-collapse
wavefunction. Since we have considered the standard deviation to be 0.25
in all cases, one should pay attention to the relative magnitudes rather than
the absolute magnitudes of the expectation values.
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- g éo\{\:/
N 1t i 7 o (]
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e x x
/ Figure 4.6: Th robability density functions of the position of the
/}’{MQ; ? particle (a) without collapse, (b) for postulate 1, (c) for postulate 2, (d) for
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4.6. POSSIBLE EXPERIMENTAL TESTS

Postulate Mean SD
No collapse -0.2662 3.4963
Postulate 1 4.8217 1.1296
Postulate 2 -0.2630 3.6354 oW, 5o the v
Postulate 3 -0.0657 3.1330 ce e
Postulate 4 -0.0812 2.8818 c+ PaawS -
Classical ensemble -0.1984 3.4991 o o 3
ovev
Table 4.2: Mean and standard deviations of the time averaged PDFs for the \,J\\U 5 7
different collapse postulates. — “ g fa u -
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Figure 4.7: Distribution of collapse locations in (a) postulate 3 and (b) pos-
tulate 4.

identical. This implies that the difference between these two postulates has
negligible effect on the long term dynamics.

Among the postulates considered, postulate 2 is the most plausible one
as it has the best correspondence with the results of the classical theory.

4.6 Possible experimental tests

At present all four postulates remam possibilities, and only experimental tests
can eliminate the wrong ones. Supercooled nanomechanical cantileverg, used
in atomic force microscopy, is ne candidate system where these predictions
could be tested.

The tip dynamics of the cantilever can be modeled [243-245] as an impact
oscillator at the transition point between attractive and repulsive tip-sample
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interactions [246]. Experimental tests into these systems have confirmed the
onset of chaos due to grazing bifurcations [247], similar to what is observed
in the impact oscillator.

Advances in laser cooling have made cooling these nano-mechanical sys-
tems to their ground state a distinct possibilty [248]. Protocols for creation
and verification of superposition [249], and entanglement [250] between two
nanocantilevers, have been proposed. It may be possible to perform measure-
ments for the distribution of the position values [251], and thus the postulates
could be tested.

4.7 Conclusion

In this chapter we have formulated four possible variants of a collapse model
which do not depend on the intervention of a conscious observer. Instead, we
postulate that the proximity to a macroscopic object may collapse a particle’s
wavefunction. Using a model system—the quantum version of a soft-impact
oscillator—we have obtained testable predictions from each postulate regard-
ing the energy and position distribution in such a system. Our computations
predict that, if an interaction with a macroscopic object induces collapse of
the wavefunction, then the probability distributions of energy and position
would be different from what is predicted by standard quantum mechanics.
Experimental test of the predictions would enable us to eliminate the wrong
postulates.
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Conclusions

This thesis is a multifaceted exploration of quantum dynamics, collapse mech-
anisms, and measurement statistics, shedding light on novel aspects of quan-
tum behavior. Our findings contribute to the ongoing quest for a deeper
understanding of the nature of quantum systems.

We investigated the quantum dynamics of a non-smooth classical system,
the impact oscillator. In the absence of forcing and damping, the classical
oscillator undergoes periodic motion. Upon sinusoidal forcing beyond a crit-
ical amplitude, the system transitions to a large amplitude chaotic orbit at
the grazing condition (ie. zero velocity impacts with the wall).

On the quantum side, the system shows quasiperiodic behavior in the ab-
sence of forcing. When a sinusoidal drive is added, the Floquet quasienergy
spectrum transitions from Poisson to Gaussian unitary ensemble as the am-
plitude of the driving is increased. In order to study the dynamical fea-
tures, we transformed the evolution of the complex-valued wavefunction into
a real-valued time series by calculating its entropy and L;-norm and applied
standard diagnostic techniques to these time series. We uncovered a new

form of aperiodic evolution around the classical grazing condition, exhibiting q\kk

signatures of strange nonchaotic dynamics. Esti)iw i uM(‘wA( v

observed in quasiperiodically forced ¢tlassical systems, gives rise to a strange (u/iSb X

(geometrically fractal) attractor but does not have a sensitive dependence on V) & g@" o

initial conditions. dov ol)‘(' 'Y
Inspecting the extracted time series, we found that its frequency spectrum Q_’(_'\"/

was discrete but dense, which is a characteristic feature of strange attractors
(79, 252]. The distribution of local Lyapunov exponents had a positive com-
ponent while the global Lyapunov exponent was negative, indicating that
the global dynamics was contracting but there were local instabilities, as
is characteristic of strange nonchaotic dynamics. The spectral distribution
function had power law character and the 0-1 test converged to values be-
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tween 0 and 1. All results pointed to the fact that the underlying dynamics
was strange but not chaotic. To our knowledge, this is the first instance of
strange nonchaotic dynamics in a quantum system.

Measurement outcomes in quantum mechanics are inherently random.
For identically prepared quantum systems, Born’s rule tells us that the dis-
tribution of measurement outcomes should match the square of the amplitude
of the wavefunction when each system is measured exactly once. In contrast,
we were interested in the statistics of periodic measurements in a single quan-
tum system. For this study, we chose the quantum harmonic oscillator as
our test-bed and subjected it periodically to measurements by an unsharp
instrument. The harmonic oscillator was chosen because of its ubiquity, as
it approximates the dynamics near the minima of any smooth potential well;
as well for its analytical tractibility. We showed that in the limit of infi-
nite measurements with an instrument of finite precision, the distribution
of outcomes converges on a zero-mean Gaussian function. We derived the
expression for the standard deviation of the distribution

o ﬁ
O = {/02 cot? wt,, + —%

402 )

WO
§ é,va"c( R
Pl here w is the natural angular frequency of the oscillator, oy is the

ground-state width, taq is the time between consecutive measurements and
o is the standard deviation of the measurement profile, which is a mea-
sure of the precision of the measuring instrument. We validated that the
analytical results are robust to perturbations by introducing noise into the
parameters of the model in numerical experiments. This work identified the
optimal measurement parameters for minimizing the standard deviation of
measurement. outcomes of a particle in a harmonic trap. These results have
practical implications for localizing particles with minimal uncertainty.

Objective collapse models provide a testable solution to the quantum
measurement problem. By positing that the wavefunction collapses sponta-
neously, they take the conscious observer out of the measurement process.
The collapses are considered perfectly acausal in such models. We, on the
other hand, explored objective collapse causally mediated by a macroscopic
object. We proposed four variants of a collapse model that do not require
the intervention of a conscious observer but instead rely on the proximity to
macroscopic objects.

In a soft impact oscillator, the wall can be treated as a macroscopic ob-
ject. The fraction of the wavefunction penetrating the wall (call it pyay) was
taken as the interaction strength with the wall and consequently the causal
factor for the collapse. We considered the following possibilities regarding
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the deterministic or stochastic influence of py.y (viz. when to collapse?)

A. pyan causes a collapse the instant it exceeds a critical value

B. pyan is the probability of collapse at any instant

and the following possibilities about the location of the collapse (viz. where
to collapse?)

C. the wavefunction always collapses at the position of the wall

D. the wavefunction collapses following Born’s rule.

We investigated all four combinations of the above possibilities, num-
bering them as (1) AC, (2) AD, (3) BC, and (4) BD. The time-averaged 1' S“"Tn

probability distribution in position was calculated to distinguish b
the four cases.{It had a single peak in case 1 while it was double-peaked in Jduvw ¥ }'0 é
n

all the other cases. The two peaks were not symmetric. Cases 1 and 2 pro- J waefs
duce identical distribution in energy while the other two cases are distinct. Jhe
The location of collapse could vary in only cases 3 and 4, where we found
that the distribution of collapse locations in both cases are almost identical,
implying that the nature of the wall’s influence, whether deterministic or
stochastic, has little observable effect. The computations provided testable
predictions for the energy and position distributions, highlighting potential
deviations from standard quantum mechanics. Experimental validation of
these predictions would offer valuable insights into the nature of collapse
mechanisms.
Collectively, this research work extends our understanding of quantum
dynamics, collapse mechanisms, and measurement statistics. The observed
strange nonchaotic behavior in the impact oscillator opens up new avenues for
exploring quantum phenomena and holds potential applications in quantum
information and related technologies. The proposed collapse models and the
challenges they pose to conventional interpretations of wavefunction collapse
provide valuable insights into the foundations of quantum mechanics. Addi-
tionally, the statistical analysis of quantum measurements contributes to our
ability to manipulate and control quantum systems with greater precision.

5.1 Scope of future work

We studied the dynamics of the driven quantum impact oscillator in the
quantum limit. Our work provided numerical evidence for strange nonchaotic
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features in the time series extracted from the quantum dynamics. Further
work is needed for the analytical justification of our claims. Secondly, most
studies on the classical impact oscillator consider the damped-driven case.
The presence of dissipation gives rise to a strange chaotic attractor in the
classical system. It remains to be seen what this would imply in the quantum
limit.

Despite their success, most of the objective collapse models—Ghirardi-
Rimini-Weber (GRW) [134], Continuous Spontaneous Localisation (CSL)
[135] and Diosi-Penrose (DP) [253]—suffer from energy non-conservation.
Although a partial resolution to the problem has been found by introducing
dissipation [254, 255], it raises new questions about the origin and nature of
the noise field considered. Hence, it is an avenue for further research.

While our findings provide evidence for the existence of novel dynamics
and the need for alternative collapse mechanisms, further investigations and
experimental tests are needed to fully validate and understand these phe-
nomena. We have identified a system that allows for testing these results.
When the nanomechanical cantilever used in atomic force microscopy is su-
percooled, its tip dynamics should begin to display quantum behavior, as has
been suggested in numerous studies. Advances in laser cooling have made
realizing such a system a distinct possibility. From a classical standpoint,
this system can be represented as an impact oscillator at the point where
the tip interactions transition from attractive to repulsive. This presents an
ideal experimental opportunity to validate our findings.
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